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ABSTRACT

In a dynamic model of large traders who manage inventory risk, we show that a daily market

closure coordinates liquidity. Some length of closure is welfare-improving relative to 24/7

trade, as the coordination of liquidity improves allocative efficiency, fully offsetting the costs

of the closure. A long closure is optimal for traders in small markets, while traders in large

markets would benefit from extending trading hours to near 24/7. A calibration of our model

to several large equity exchanges that have proposed extending trading hours suggests that

implementing such proposals would benefit traders.
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I. Introduction

Trading hours have historically aligned with the conventional workday due to the ne-

cessity of human involvement in both the submission and execution of trades. However,

technological advancements have significantly reduced the need for human involvement, en-

abling many markets—such as futures, foreign exchange, and cryptocurrencies—to operate

nearly continuously, often closing for only brief maintenance windows. Furthermore, the

increased globalization of firms and the financial sector has generated new demand from

market participants to respond to firm-relevant news as it emerges around the clock, often

outside the firm’s domestic trading hours.1 In response, some major equity exchanges will

soon extend their trading hours beyond the traditional 6.5-hour window, moving towards

23-hour trading days.2 We analyze how changes in trading hours affect market liquidity and

trader welfare.

We study a dynamic model of large traders managing risky inventory positions of a traded

asset who rationally anticipate how their orders affect prices. Gains from trade are a result

of both inventory cost sharing and reallocation across agents with stochastic private values.

Traders optimally balance the benefits of eliminating undesired inventory against the costs

of incurring price impact. We quantify the allocative efficiency of a market in equilibria of

two market designs: one with a daily closure for a fixed fraction of the day and another with

24/7 trading. A daily closure is costly because it eliminates traders’ ability to manage their

inventory when the market is closed, leading traders to arrive at the start of the next day in

positions that may be far from desirable.

Is there any benefit to a daily market closure? If there is a closure, traders rationally

anticipate being unable to directly manage their inventory positions during the closure,

which incentivizes them to further incur price impact by trading more aggressively towards

1Alternative trading systems (ATSs) have emerged to meet this demand, facilitating trading for certain
exchange-traded products from 8:00 PM to 4:00 AM Eastern Standard Time. Eaton et al. (2025) document
that 80% of the volume during these hours originates from the Asia-Pacific region.

2For example, 24X received SEC approval in November 2024 to launch the first registered 23/7 U.S.
equity exchange. The New York Stock Exchange polled market participants about 24/7 trading in April
2024 and is moving their Arca exchange’s trading hours to 22/5. The Nasdaq and CBOE EDGX equities
exchanges are similarly extending their trading sessions to 24/5. Robinhood, Charles Schwab, and Interactive
Brokers already offer 24/5 access to selected equities and ETFs through ATSs such as Blue Ocean and EOS,
respectively. However, the other ten U.S.-registered equity exchanges and popular international exchanges,
such as the London and Tokyo Stock Exchanges, currently do not have public plans to extend trading hours.
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a desirable position at the end of the trading day. In turn, this aggressive trading increases

liquidity at the end of the day, which lowers the cost of trading and further incentivizes

aggressive trading at the market closure. Therefore, liquidity is coordinated, and “liquidity

begets liquidity,” resulting in very low price impact and very efficient trade at the close.

Aware that liquidity will be coordinated in the final trading session of the day, traders

have a strategic incentive to delay trade until the price impact is low in the last session of

the day. This incentive to postpone trade within the day can be sufficiently large that there

is an endogenous no-trade period in the sessions just preceding the final trading session.

The incentive to postpone trade is largest in markets with few traders, where liquidity is

spread relatively thin, and in markets where the payment of the asset’s liquidating dividend

is unlikely to occur before the next trading opportunity, making the cost of postponing trade

relatively small. To summarize, although a daily closure has a natural cost by restricting

traders’ ability to respond to shocks, it has the benefit of coordinating trade at the closure.

That benefit is also partially offset by the socially costly strategic delay of trade within the

day. This strategic delay is consistent with empirical evidence that trade at closing auctions

is highly concentrated, potentially at the expense of preceding sessions (e.g., AMF (2019)).

Bogousslavsky and Muravyev (2023) find that their measure of illiquidity is seven times

higher between 3:30 and 3:45 than between 4:00 and the closing auction.

The mechanisms of the model with closure are summarized through the behavior of

intraday trade volume. We decompose traded quantities into two components that vary

over time: a component that determines the gap a trader faces between their current and

desired inventory, and a component that determines how aggressively a trader trades to

eliminate the gap. Trade aggressiveness in a given session, the second component of trade, is

increasing in liquidity. At the start of the day, traders face large gaps between their current

and desired inventory levels, as shocks to their desired inventory position occur during the

closure that traders are unable to respond to. This generates a large volume at the start of

the day despite relatively low trade aggressiveness. At the end of the day, traders trade very

aggressively to close any gap that remains. So, even though trade earlier in the day shrinks

the gap between current and desired inventory, this aggressive trade at the liquid closing

session results in large volume. In the middle of the day, the gaps between traders’ desired

and current inventories are not particularly large, and trade is not particularly aggressive,

resulting in low volume compared to other parts of the day. Thus, as in the data (e.g., Chan
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et al. (1996), Jain and Joh (1988)), intraday volume exhibits a U-shaped pattern.

When trade is 24/7, there is no equilibrium in which traders coordinate trade. Since

traders rationally anticipate how their demand affects prices and future inventory positions,

they break up their orders over time to minimize execution costs, leading to socially inefficient

excess inventory costs (Du and Zhu, 2017b, Rostek and Weretka, 2015, Vayanos, 1999).

Liquidity is spread out, and price impact further increases, further incentivizing traders to

break up their orders. With 24/7 trade, liquidity is spread thinly throughout the trading

day. A market closure can potentially benefit traders by coordinating liquidity.

Next, we quantify trader welfare in various market designs. We show that there is always

a length of closure that is better than having trade 24/7. The optimal closure may be short.

We find the optimal length of closure is longer in smaller markets, that is, markets where

the number of traders and the rate of shocks to private values are small. In markets with a

large number of traders, liquidity is already substantial, minimizing the relative benefits of

coordinating trade. In markets in which shocks to private valuations are frequent, the costs

of restricting traders’ ability to respond to these shocks are high, implying a short closure is

optimal.

We calibrate our model to four different equity exchanges—NYSE, Nasdaq, CBOE EDGX,

and NYSE Arca—to assess the policy implications of likely changes to the current U.S. eq-

uity market structure.3 We choose these four exchanges because the NYSE is the largest

registered U.S. equity exchange, and the Nasdaq, CBOE EDGX, and NYSE Arca have an-

nounced plans to extend to 24/5, 24/5, and 22/5 trading days, respectively. We calibrate the

model to match the model-implied intraday volume to the empirical intraday volume. The

calibration suggests that, for the exchanges we consider, the proposed changes in trading

hours will benefit traders, and a very short closure of 2 to 7 minutes is optimal. Our results

suggest that the NYSE should follow suit and extend its trading hours, as should other large

equity exchanges, such as the London and Tokyo stock exchanges, which currently have no

plans to do so. The calibrated welfare gains relative to the current market structure are

similar across counterfactuals with 23/7 trade, 24/7 trade, and the optimal closure.

Our main results are robust to allowing traders to observe noisy private signals about

fundamental asset values. Heterogeneity tends to reduce the aggressiveness of trade overall,

as it introduces a price impact resulting from adverse selection. Yet, closure still coordinates

3Although we focus on equity markets, the theoretical framework is applicable to other asset classes.
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liquidity, improving welfare by allowing traders to trade very aggressively at the end of the

day with minimal price impact, especially in markets with few traders or with infrequent

shocks to private and fundamental values.

The purpose of this paper is to evaluate the merits of changing trading hours in a frame-

work that accounts for price impact, the first-order concern for large traders. Indeed, Frazzini

et al. (2018) empirically documents that price impact is the only first-order trading cost for

a large asset manager. In this respect, this paper follows a series of papers, including Chen

and Duffie (2021), Antill and Duffie (2020) and Du and Zhu (2017b), that evaluate market

structures in frameworks that consider price impact and the strategic incentives of traders.

Nevertheless, there are additional factors that should be considered when policymakers eval-

uate the merits of extending trading hours. These include the incentives of exchanges, par-

ticularly when markets are fragmented, the incentives of firms, the effects of trading hours

on the efficiency of closing prices, implications for international participation in financial

markets, regulatory concerns, and implications for retail traders. We discuss each of these

factors in detail in Section VII. Given exchanges propose changes to trading hours, their

incentives are particularly important. Although a full analysis of their fee contracting and

competitive incentives in fragmented markets is beyond the scope of this paper, we do ana-

lyze the implications of changes in market structure for volume, which is a primary source of

revenue for exchanges. In particular, in large markets, we find that extending trading hours

would increase daily volume in the model, suggesting that their incentives are largely in line

with those of traders, as suggested by our calibrated welfare results.

Literature Review

There is extensive literature empirically documenting intraday and overnight patterns

in financial markets.4 A substantial literature theoretically explains these facts (Hong and

Wang, 2000, Subrahmanyam, 1994, Foster and Viswanathan, 1993, Brock and Kleidon, 1992,

Foster and Viswanathan, 1990, Admati and Pfleiderer, 1989, 1988). However, these studies

treat the duration of the daily market closure as fixed. This paper differs by varying the

length of closure and analyzing welfare in a dynamic setting with endogenous price impact, a

4For example, Bogousslavsky (2021), Hendershott et al. (2020), Lou et al. (2019), Branch and Ma (2012),
Kelly and Clark (2011), Cliff et al. (2008), Branch and Ma (2006), Andersen and Bollerslev (1997), Chan
et al. (1996), Amihud and Mendelson (1991), Stoll and Whaley (1990), Barclay et al. (1990), Harris (1989,
1988), Amihud and Mendelson (1987), Harris (1986), Fama (1965).
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first-order concern for large traders. Nonetheless, some of these studies do offer mechanisms

related to ours. In a competitive setting, Hong and Wang (2000) takes an asset pricing

perspective and studies the implications of restricting overnight trade; we take a market

design perspective and show that under imperfect competition, restricting overnight trade

can actually enhance allocative efficiency, a novel and central result. Admati and Pfleiderer

(1988) and Foster and Viswanathan (1990) find that noise traders may concentrate trade to

mitigate adverse selection, although they do not study intraday patterns of trade concentra-

tion; we show that even homogeneous traders will strategically cluster trades before a daily

closure.

This paper also contributes to the literature on how common financial market structures

interact with strategic trading and the implications for the allocative efficiency of the mar-

ket (Rostek and Yoon, 2025). Chen and Duffie (2021), Malamud and Rostek (2017), and

Kawakami (2017) study market fragmentation. Fuchs and Skrzypacz (2019), Du and Zhu

(2017b) and Vayanos (1999) study trading frequency. Antill and Duffie (2020), Duffie and

Zhu (2017), and Blonien (2024) examine the addition of a trading session at a fixed price.

Chen et al. (2024), Kodres and O’Brien (1994), Subrahmanyam (1994), and Greenwald and

Stein (1991) study circuit breakers. Fuchs and Skrzypacz (2015) study government market

freezes in a dynamic adverse selection model. Apart from being the endogenous outcome

of adverse price movements, circuit breakers do share conceptual similarities with daily clo-

sures. Although none of these papers study the implications of daily market closures for

both allocative efficiency and liquidity in a dynamic model.

Bid shading, or the strategic delay of trade, is a standard result in dynamic models with

price impact and strategic trade. In studies such as Antill and Duffie (2020), Du and Zhu

(2017b), and Vayanos (1999), strategic delay is a direct response to a change in market

structure. In this paper, the strategic delay before the close is a strategic response to the

endogenous coordinated trade at the end of the trading day. The coordinated trade at the

end of the day is, in some sense, the opposite of strategic delay, as traders rush to the market

in anticipation of worsening investment opportunities overnight. The fact that traders can

exhibit oscillatory-type strategic delay, and that it can be so strong as to preclude trade in

the periods just prior to the close, is theoretically novel, and an illustration of the complex

patterns that can arise in non-stationary dynamic trade.5

5Rostek and Weretka (2015) also has non-stationary market characteristics in a slightly different equi-
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deHaan and Glover (2024) is a recent paper whose focus is on the empirical portfolio

performance of retail traders as a function of trading hours. We do not directly model

retail traders. Over 90% of retail marketable orders are internalized by wholesalers off-

exchange (Gensler, 2022), suggesting that changes in exchange hours will primarily affect

retail traders through their effect on wholesalers. If the allocative efficiency gains in our

model are transmitted to retail traders through better pricing or execution, our calibration

suggests that extended trading hours would be beneficial for retail traders.

The presence of market closures is closely linked to the existence of closing auctions, whose

characteristics have been of recent interest. Bogousslavsky and Muravyev (2023), Jegadeesh

and Wu (2022), and Hu and Murphy (2025) empirically study liquidity and price efficiency

around the NYSE and Nasdaq closing auctions. The percentage of daily volume transacted

in these special sessions has reached an all-time high in recent years (Bogousslavsky and

Muravyev, 2023), consistent with our model, which generates substantial volume near the

opening and closing. Our model predicts that if trading hours are extended, trading volume

will be less concentrated at the opening and closing sessions. The Autorité des Marchés Fi-

nanciers (AMF, 2019) has warned that concentration at the close could harm price efficiency

and liquidity beforehand. We find that although liquidity does deteriorate as traders delay

for the closing auction, the resulting social costs can be outweighed by the coordination

benefits of closure.

The paper proceeds as follows. Section II defines the model. Section III defines and

solves for the equilibrium and builds intuition for how the traders optimally trade with and

without a market closure. Section IV quantifies welfare. Section V calibrates the model to

several equity exchanges. Section VI extends the model to allow for heterogeneous signals

about a common dividend. Section VII discusses additional factors beyond price impact that

should be considered when evaluating the merits of extending trading hours. Section VIII

concludes. The Appendices provide technical details and proofs.

librium concept. In their setting, price impact is non-stationary and depends on the timing of information
about the dividend throughout the session, although equilibrium allocations are stationary functions of state
variables. In our setting, the end of the trading day coordinates and improves liquidity and increases the
trade aggressiveness embedded in demand schedules.
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II. The Model

This section introduces a model of strategic trading under imperfect competition with

periodic market closures. Time is continuous and goes from 0 to ∞. We set a unit of clock

time to be 24 hours. Each 24 hour period is divided into K evenly spaced subperiods of

length h := 1
K
. Trade occurs the first T + 1 periods, and no trade is permitted in the last

∆ periods. We refer to the fraction of the 24 hours when trade can occur as “day,” and the

remaining fraction is referred to as “night.”

Let us illustrate this setup in the first day, where clock time t is in [0, 1). Trade occurs

at times 0, h, . . . , Th, and the night spans times (Th, 1), which includes times (T +1)h, (T +

2)h, . . . , (T +∆)h. Note (T +∆)h = 1 − h. At time 1, the next day starts, and the timing

repeats.

There are N ≥ 3 risk-neutral traders who trade a divisible asset. Traders want to hold

the asset because it pays a liquidating dividend of v per unit of inventory held. The time to

liquidation is exponentially distributed, denoted T ∼ Exp(r), so that the expected time until

liquidation is 1
r
. Each trader is endowed with some portion of the asset, referred to as the

trader’s initial inventory. In addition to differing endowments, traders have private values

that motivate trade (Harris and Raviv, 1993). We assume a private value of wi
T per unit

of the asset is realized upon liquidation. Thus, the total value of the asset at liquidation is

v + wi
T . The private value, wi

t, is a continuous-time random walk with normally distributed

zero-mean increments with standard deviation σ that arrive at a constant rate λ. These

shocks are independent across time and traders and independent of all other shocks in the

model. Shocks to private values induce continued gains from trade over time. These shocks

can be motivated by risk management considerations or shocks to preferences. They simply

represent a reduced-form motive for trade, whether due to behavioral or rational reasons.

Each trading session is modeled as a uniform-price double auction. Each trader i submits

a demand schedule Di : R −→ R that is a mapping of price to demand, p 7→ Di(p). The

market-clearing price, p∗t , is the price that sets net demand to be zero,

N∑
i=1

Di(p∗t ) = 0. (1)

Each trader pays the equilibrium price, p∗t , times the amount of the asset they were allocated,

Di(p∗t ). If D
i(p∗t ) < 0, then trader i receives the price times the amount of the asset they sell.
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The modeling of trade as an auction, as opposed to a limit-order book, provides tractability

while maintaining the important economic mechanism of price impact from trade.

Traders in the model dynamically manage inventory positions. Define trader i’s inventory

of the asset at time t to be zit, and the average aggregate inventory, Z̄ := 1
N

∑N
i=1 z

i
t, is a

constant. After trade at time t, trader i’s inventory moves to zit + Di(p∗t ). In addition

to trading due to heterogeneous private values of the asset, traders also trade to manage

inventory costs. In particular, we assume traders incur a holding cost per unit of time of

γ×(zit)
2.Chen and Duffie (2021), Antill and Duffie (2020), Duffie and Zhu (2017), Du and Zhu

(2017b), Sannikov and Skrzypacz (2016), Rostek and Weretka (2012), Vives (2011), Blonien

(2024) and Chen (2022) all use a similar quadratic holding cost. This cost can be interpreted

as representing inventory costs or collateral requirements. More generally, including these

exogenous inventory costs is a reduced-form approach to modeling incentives to risk share.6

Since traders can only manage inventory through trade during the day, and private values

can be shocked during the day or overnight, the restrictions that market closures impose have

obvious costs. If a shock to private values arrives overnight, traders will arrive at the start

of the next day at positions that are suboptimal. In the model, traders trade off maintaining

suboptimal inventory positions against price impact costs. Therefore, they trade slowly

toward their desired inventory position, potentially heightening the costs of a temporary

closure. This paper’s goal is to study the costs and benefits of daily market closures through

the organization of trade they induce.

Now, let us define the traders’ optimization problem. In the following sections, we will

study equilibria that are periodic, with a period of one day. Therefore, to ease the exposition,

we simply focus on time t ∈ [0, 1) and note that expressions at any other time are analogous.

Recall that trade during the first day occurs at times 0, h, . . . , Th. For t = kh in any of these

periods apart from the last, denote any trader’s value function Vk. The value function is

a function of current inventory position zi, current private value wi, and average aggregate

private value W̄ = 1
N

∑N
i=1w

i, and satisfies the following Bellman equation:

6Having described the model, it is worth noting slightly different assumptions— continuously paid liqui-
dating dividends, repeatedly paid dividends, private value shocks at pre-determined arrival times, correlated
private value shocks, private signals about a risky common value v (see Section VI), and time-varying de-
terministic inventory costs or private value shocks—do not substantively change the mechanisms of the
model.
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Vk(z
i, wi, W̄ ) = max

Di

{
−Dip∗kh︸ ︷︷ ︸

cost of
trade

+(1− e−rh)︸ ︷︷ ︸
prob. of
liquidation

(zi +Di)(v + wi)︸ ︷︷ ︸
liquidation value

− (1− e−rh)

r︸ ︷︷ ︸
expected length

of flow cost

γ

2
(zi +Di)2︸ ︷︷ ︸
inventory
flow cost

+ e−rh︸︷︷︸
prob. of no
liquidation

EkhVk+1(z
i +Di, wi

(k+1)h, W̄(k+1)h)︸ ︷︷ ︸
expected future value

}
. (2)

The maximum is over demand schedules, not simply realized demands. The first term

corresponds to the cost (allocated quantity times the market-clearing price) of trade incurred

in the double auction at time kh. The next term corresponds to the expected payoff if

the asset liquidates before the next session times the probability it liquidates before the

next session. The third term is the expected holding cost before the next session, which

incorporates the probability that the asset might liquidate, after which there is no more

holding cost. The last term is the next period’s continuation value, assuming the asset does

not liquidate before then, times the probability the asset does not liquidate before the next

period. As we will show, prices reveal the average private value W̄ in equilibrium. Therefore,

the value function is a function of W̄ insofar as it affects future prices and realized demands

and, thus, utility. In the last trading period of the day, that is the (T + 1)th trading session

at clock-time Th, the Bellman equation is modified to the following:

VT (z
i, wi, W̄ ) = max

Di

{
−Dip∗Th︸ ︷︷ ︸

cost of
trade

+(1− e−rh(1+∆))︸ ︷︷ ︸
prob. of
liquidation

(zi +Di)(v + wi)︸ ︷︷ ︸
liquidation value

− (1− e−rh(1+∆))

r︸ ︷︷ ︸
expected length

of flow cost

γ

2
(zi +Di)2︸ ︷︷ ︸
inventory
flow cost

+ e−rh(1+∆)︸ ︷︷ ︸
prob. of no
liquidation

EThV0(z
i +Di, wi

1, W̄1)︸ ︷︷ ︸
expected future value

}
. (3)

The terms are modified to reflect the increased likelihood that the asset liquidates before the

next trading session, as there are h(1 + ∆) units of clock time between trade instead of h.

III. Equilibrium

Section IIIA studies the equilibrium of the model of strategic trading under imperfect

competition with periodic market closures. Section IIIB studies a version of the model

without market closure that is a special case of the model studied in Du and Zhu (2017b).

Sections IIIC through IIIE study results that describe the solution of the model.
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A. Equilibrium with a Daily Closure

Prior studies of uniform-price double auctions (e.g., Antill and Duffie (2020), Du and

Zhu (2017b), Vayanos (1999)) frequently consider equilibria that are symmetric, linear, and

stationary. That is, the equilibrium demand schedules of each trader are the same linear

combination across time of price and other relevant state variables. In our model with daily

market closures, such an equilibrium will generally not exist. The trading problem that every

trader faces is not ex-ante identical at each trading session, as the opportunity set changes

throughout the day, precluding the existence of stationary equilibria. For instance, as the

closure approaches, traders will behave differently since the inability to manage inventory

overnight presents a substantial change to their opportunity set.

Therefore, we focus on symmetric, linear, and daily-periodic demand schedules. For ex-

ample, in equilibrium, all demand schedules submitted at 9:30 AM will be the same function

every day, but all traders may use a different demand schedule at 10:00 AM than they did

at 9:30 AM. Thus, the equilibria we consider are stationary across days but not within the

same day. Concretely, we conjecture that the equilibrium demand schedule at trading session

k ∈ {0, . . . , T} is of the following form:

Di
k(z

i, wi, p) = ak + bkp+ ckz
i + fkw

i, (4)

and bk ≤ 0. By market clearing, in equilibrium, trader i will face the residual supply curve

of the other N − 1 traders and effectively choose a price and quantity pair.

In addition to allowing the submission of periodic, not constant, demand schedules, we

also differ from prior literature by allowing investors to submit demand schedules whose

slopes bk are 0. If trader i chooses demand quantity di, then by market clearing, the price

must solve di +
∑

j ̸=i(ak + bkp + ckz
j + fkw

j) = 0. If bk = 0, there is generally no market-

clearing price in a symmetric, linear equilibrium, unless the submitted demand schedules are

uniformly equal to 0, in which case any price clears the market. In other words, allowing bk

to equal 0 is akin to allowing the traders to abstain from trade. Intuitively, if other traders

submit demand schedules equal to zero, it is equilibrium behavior for trader i to submit a

demand schedule equal to zero, since trader i will be allocated zero regardless of the price.

Now let us consider the case bk < 0. This case corresponds to periods k with non-zero

trade. If trader i chooses demand quantity di, then by market clearing, the price must solve
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di +
∑

j ̸=i(ak + bkp+ ckz
j + fkw

j) = 0. Therefore, the market-clearing price is

Φk(d
i, zi,W−i) := p = − 1

bk(N − 1)

(
di + (N − 1)ak + ck(NZ̄ − zi) + fkW

−i
)
, (5)

where W−i =
∑

j ̸=i w
j. Traders are strategic, and thus, they rationally anticipate and

internalize how their demand affects prices due to imperfect competition. As price impact

itself is only a wealth transfer between traders, it is the strategic effects of avoiding price

impact that can be socially costly by reducing allocative efficiency.

A symmetric (Markov perfect) equilibrium of the above stochastic game is defined by

the sequences (ak)
T
k=0, (bk)

T
k=0, (ck)

T
k=0 and (fk)

T
k=0. Equilibrium requires that if trader i

conjectures the other N − 1 traders use the demand schedule from equation (4), trader i’s

best response is to submit the same demand schedule, and the market clears. It is important

to note that we do not assume that trader i must play the conjectured form of the demand

schedule, but it will be their best response to do so, contingent on others submitting linear,

symmetric, and daily-periodic demand schedules.

There are multiple equilibria when traders can submit zero demand schedules in any

period. If all other traders submit zero demands, it is equilibrium behavior for any trader to

do the same, as market clearing implies that residual demand, and thus their own equilibrium

demand, is 0. Thus, in principle, traders can abstain from trade in any combination of periods

during the trading day. In particular, two general classes of equilibria are possible: one in

which no-trade periods occur only when there is no symmetric and linear non-zero trade

equilibrium that period, and another class in which there are periods in which investors

do not trade in some periods, even though there is a symmetric and linear non-zero trade

equilibrium in at least one of the no-trade periods. The former class of equilibria is unique,

while the latter can greatly increase the number of possible equilibria. To restrain the number

of equilibria, we require that equilibria also satisfy a trembling-hand refinement. Specifically,

from the perspective of trader i, assume the other N − 1 traders jointly tremble between

two possible equilibria, playing one with probability 1 − q and the other with probability

q. Then, we consider the limiting behavior of investor i as q → 0. In particular, for the

equilibrium whose probability of being played converges to 1 to survive the refinement, we

require that trader i’s optimal demand schedule converges to its equilibrium demand at any

date. This refinement rules out fragile equilibria by selecting equilibria that are robust to

potential deviations from the equilibrium path. Moreover, it selects equilibria from the class
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for which no-trade periods occur only when there is no symmetric and linear non-zero trade

equilibrium that period. To summarize, the equilibrium of the demand submission game

that we study is defined as follows:

DEFINITION 1: Equilibrium of the demand submission game is described by the sequences

(ak)
T
k=0, (bk)

T
k=0, (ck)

T
k=0 and (fk)

T
k=0. In each period in the trading day, equilibrium requires

that if trader i conjectures the other N − 1 traders submit the demand schedule

Di
k(z

i, wi, p) = ak + bkp+ ckz
i + fkw

i,

where bk ≤ 0, trader i’s best response is to submit the same demand schedule, and the market

clears. Moreover, the equilibrium must satisfy the trembling-hand refinement.

We show in Appendix A that an equilibrium exists, is unique, and is characterized by

Proposition 1.

PROPOSITION 1: There is a unique equilibrium of the demand submission game. Moreover,

the equilibrium has the following properties:

1. There is always non-zero trade in the last period of each day, period T .

2. If there is at least one period with trade prior to period T , then it consists of a sequence

of contiguous periods with non-zero trade followed by a contiguous no-trade period,

either of which may be of length zero.

3. In periods with non-zero trade, the equilibrium quantity traded takes the form

Di
k(p

∗
kh) = ck

(
zikh −

( r
γ
(wi

kh − W̄kh) + Z̄
))

, (6)

where k ∈ {0, . . . , T}, for ck ∈ [−1, 0) characterized in Appendix A. The equilibrium

market-clearing price is

p∗kh = v + W̄kh −
γ

r
Z̄. (7)

4. Let c̄ denote the equilibrium value of ck if there is no market closure, as given below

in Proposition 2. In two consecutive periods of trade k, k + 1, if ck > c̄, then ck+1 <

c̄. Similarly, if ck < c̄, then ck+1 > c̄. An analogous pattern applies to 1/bk, which

determines price impact.

Even though a unique equilibrium exists, non-zero trade does not necessarily occur every

period during the day. Equivalently, there may be periods in which bk = 0 in equilibrium.
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The equilibrium is unique even though trade can equal 0 in a given period because in periods

without trade, there is no submission of non-zero demand curves that form an equilibrium;

in equilibrium, traders abstain from trade if and only if there is no equilibrium with non-zero

trade in a given period. Proposition 1 shows that there will be a contiguous period of non-

zero trade, followed by a contiguous period without trade, followed by a final period with

trade. The overnight closure of length ∆ then follows the final period of trade. As stated

in the proposition, it is worth bearing in mind that the contiguous periods of trade or of no

trade may be of length 0, but there is always non-zero trade at the close.

Let us discuss these results. We will begin by discussing the allocations in the model,

described in property 3 of Proposition 1. Then, we will discuss the strategic incentives in

the model, summarized in property 4, and what these strategic incentives imply regarding

the patterns of trade throughout the trading day, summarized by properties 1 and 2.

First, let us look at the functional form of the allocation, ck(z
i − ( r

γ
(wi − W̄ ) + Z̄)). The

allocation is the current inventory net of a measure of desired inventory, which we define as

z̃i := r
γ
(wi−W̄ )+ Z̄, multiplied by ck. z̃

i is the inventory position a trader would reach each

period after trade if the market were competitive. We refer to r
γ
(wi − W̄ ) + Z̄ as desired

inventory because if zi = r
γ
(wi − W̄ ) + Z̄ for every trader, then there is no more trade in

equilibrium. Consider the post-trade inventory position,

zik+1 = zik +Di
k(p

∗
k) = (1 + ck)z

i
k − ckz̃

i
k. (8)

Recalling that ck lies in [−1, 0) when there is trade, ck measures trade aggressiveness as it

is the fraction of trader i’s new inventory position that is made up of their old inventory

position, and the remaining fraction is the desired inventory position. Subtracting z̃ik from

both sides of Equation 8, the gap between the next period’s inventory and the desired

inventory is

zik+1 − z̃ik = (1 + ck)
(
zik − z̃ik

)
. (9)

As ck approaches −1, which is its value under perfect competition, this gap approaches zero,

and the allocation of the asset becomes more efficient.

We will see numerically in the remaining sections that the coefficient ck in the equilib-

rium allocation is negative and largest in absolute value in the last session of the trading

day. As the end of the day approaches, traders are aware that they will soon lose the oppor-

tunity to manage random shocks in their desired inventory positions through trade. They
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all, therefore, have the incentive to enter the closure in a desirable inventory position. As

a result, traders are more willing to incur price impact and temporary trading costs toward

the end of the trading day. The old adage of “liquidity begets liquidity” comes into effect;

liquidity improves due to the symmetric fear of suboptimal inventory positions being exacer-

bated overnight, making it even cheaper to trade more aggressively now, further encouraging

aggressive trading.

This incentive to enter overnight in a good position is strongest in the final period of

trade. In fact, by backward induction, traders know that trading costs will be low in the

final period. Therefore, traders have an incentive to postpone trading until then, thereby

reducing liquidity in the penultimate period. This explains property 4 of the equilibrium,

which formalizes the strategic incentives in the model. Essentially, if trade is aggressive in

the next period, trade is less aggressive in this period, as traders postpone to the next period

when the price impact is lower. Similarly, if trade is less aggressive in the next period, trade

will be more aggressive in this period. Thus, trade has some oscillatory properties. In our

numerical examples, the oscillations in ck decay quickly as traders move backward in time

from the final trading sessions.

The incentives to postpone trade are smallest when N , the market size, is large or when

rh, the per-period discount rate, is large. When there are many traders, price impact is

generally small, implying that the benefits of a liquid final period of trade are muted. If the

per-period discount rate, rh, is large, the costs of delaying trade are large as the asset is

more likely to liquidate before the next trading opportunity. Formally, if the incentives to

postpone trade are not large, we arrive at an equilibrium with trade every period:

COROLLARY 1: If (N − 1)(1− e−rh) > 1, the unique equilibrium has non-zero trade in all

periods, 0, . . . , T .

The condition (N − 1)(1 − e−rh) > 1 is a sufficient condition that describes how large

N and rh must be in order for trade to occur every period. If the incentives to postpone

trade are sufficiently strong, the equilibrium with trade every period breaks down, and there

is at least one period of no trade leading up to the closing session. Empirically, an analog

of this result is the fact that in markets with closing auctions, liquidity prior to the closing

auction is relatively thin, as trade is delayed due to the coordination in the closing auction

(Bogousslavsky and Muravyev (2023), AMF (2019)). We study the length of the period of
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no trade in the model in Section IIIC.

Before moving on to analyze the model in more detail, we note that there is a continuous

trade version of the model, which we will make use of when analyzing welfare. In this model,

trade occurs at a rate in a continuous sequence of uniform-price double auctions for the first

1−∆− ϵ units of the day, there is a no-trade period for the next endogenous length ϵ units

of time, and a closing auction occurs at time 1−∆. We slightly abuse notation by defining

∆ ∈ [0, 1) to be the fraction of the day that the market is closed in the continuous trade

model, whereas it is the number of periods the market is closed in the discrete trade model.

The derivation of this continuous trade equilibrium is in Internet Appendix IA.4, where we

also show the convergence of the discrete trade model. In this version of the model, the

length of the no-trade period can be determined analytically, with no parameter restrictions

apart from N ≥ 3. Moreover, prior to the no-trade period, demand schedules are stationary

and thus do not depend on time and so do not oscillate.

It is worth highlighting some of the expressions in the continuous trade version of the

model, as quantities such as ck and bk for the discrete trade model are provided in the

Appendix but are not readily interpretable. In the continuous trade model, the length of the

no-trade period ϵ is

ϵ = min

{
1−∆,

1

r
log

(
e−∆r + (1− e−∆r)N

e−∆r + (1− e−∆r)(N − 1)

)}
. (10)

For ϵ < 1−∆, the coefficient cT in the demand function at the close, 1−∆, is

cT = − (N − 2)(1− e−∆r)

e−∆r + (1− e−∆r)(N − 1)
, (11)

and cT = γ
r
bT . It’s straightforward to see that ϵ is increasing in ∆ (as long as the minimum

above does not bind) and decreasing in N , while both cT and bT become more negative as

N and ∆ increase. These comparative statics are analyzed in further detail in the discussion

surrounding Figure 2 below.

B. Equilibrium Without a Daily Closure – 24/7 Trading

Let us briefly review the solution without market closure and then compare the two

models. We make no other modifications to the model from the previous section other than

setting ∆ = 0. Once again, we differ from most prior literature by conjecturing linear,

symmetric, and periodic equilibria of the same form as Equation 4, and by allowing demand
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to be uniformly zero in any period. Periodicity again requires the demand schedules to be

periodic functions of time with period 1.

We characterize the equilibrium in Proposition 2.

PROPOSITION 2: When ∆ = 0, there exists a unique equilibrium. The equilibrium has the

following properties:

1. The equilibrium quantity traded takes the form

Di
k(p

∗
kh) = c̄

(
zikh −

( r
γ
(wi

kh − W̄kh) + Z̄
))

, (12)

where k ∈ {0, . . . , T}, and c̄ ∈ [−1, 0] and is equal to

c̄ =
−(N − 1)(1− e−rh) +

√
(N − 1)2(1− e−rh)2 + 4e−rh

2e−rh
− 1.

2. The equilibrium market-clearing price is

p∗kh = v + W̄kh −
γ

r
Z̄. (13)

The equilibrium strategy played is time-invariant. Despite allowing the demand schedules

submitted to be periodic across days, the unique equilibrium is constant across time, as in

Du and Zhu (2017b). Additionally, despite allowing submitted demand curves to equal 0, no

equilibrium with zero trade in a period satisfies the trembling-hand refinement. Thus, this

equilibrium is a special case of Du and Zhu (2017b) in which there is no adverse selection.

In the model with closure, trade is non-stationary throughout the day. Importantly, this

non-stationarity leads to a coordination of liquidity towards the end of the day.

It is worth noting that prices are the same when trade is 24/7. In equilibrium, the first-

order condition for optimal demand implies that the price has to equal the average marginal

value of the asset. That is, p∗kh = 1
N

∑N
i=1

∂Vk

∂zi
. This average marginal value does not depend

on price impact since price impact is a transfer across traders. It is only a function of the

marginal benefit of holding the asset, which depends on the common and private values, and

the marginal cost of holding the asset, which depends on γ.

C. Equilibrium Intuition

In this section, we compare the equilibrium in Proposition 1 with a market closure to

the equilibrium in Proposition 2 with 24/7 trade. The introduction of an overnight closure,

which lasts h(1+∆) units of clock time, creates non-stationarity in the equilibrium demand
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Figure 1. Trading Intensity Throughout the Day
This figure plots trading intensity for various regimes throughout the day. The y-axis is the
expected percentage of the time 0 excess inventory left at time t in the day. The solid lines
are market designs with a closure of 31.25% of the day from Proposition 1, and the dashed
lines are market designs without a closure from Proposition 2. The colors map to the trading
frequency of the market, with blue being K = 16 periods a day and orange being continuous
trading. The vertical dotted line is when the market closes for trading for structures with
closure. We use N = 100 and r = 1/30.

functions. In the 24/7 model, the aggressiveness of traders, ck, is constant over time. In the

model with a daily closure, trade aggressiveness has three distinct periods of behavior. Let

us discuss this through the example displayed in Figure 1.

Figure 1 quantifies the aggressiveness of trade when there is a market closure, separately

for discrete and continuous trade versions of the model. The y-axis is the percentage of

excess inventory left relative to the start of the day for a given trader, assuming neither

shocks to private values nor asset liquidation occur. Recall excess inventory is simply the

difference between current inventory, zit, and desired inventory, z̃it, which is closed by 1 + ck

in trading session k. Mathematically, the y-axis is
∏k

j=0(1 + cj), where k is the (k + 1)th
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trading session of the day, which occurs at clock time kh.

When trade is 24/7, c is constant and between −1 and 0, and traders close |c| percent of
the excess inventory each period. When the trading frequency is higher, liquidity per trading

session is lower, which increases price impact, which further reduces traders’ willingness to

trade. Du and Zhu (2017b) studies the tradeoff between this strategic cost and the ability

to react to shocks more quickly by quantifying the optimal trading frequency in financial

markets.

When there is a daily closure, the strategic incentives dramatically change the equilibrium

trading patterns. Let us work backwards in time. Starting at the close, traders rationally

anticipate that they will be stuck in an inventory position overnight, which will incur flow

costs overnight irrespective of the shocks to their private values, and there is also some

chance the asset will liquidate. Moreover, traders will not be able to react to shocks to

private values that occur overnight, making excess inventory at the end of the day even less

desirable. These risks increase traders’ marginal willingness to incur additional price impact

at the end of the day to avoid a worse inventory position at the start of the following day,

which will take many trading sessions to correct due to price impact-induced bid shading.

This incentive is present among all traders. As they all trade more aggressively, liquidity

increases, which in turn decreases the price impact. Therefore, traders become even more

aggressive, and this logic repeats. The closure helps traders coordinate their trades, which

are otherwise broken into child orders when trading is 24/7. This can be seen in the plot

by the large downward jump in the amount of excess inventory held immediately after the

last trading session of the day. When trade is 24/7, the amount of excess inventory is larger

overnight than when there is a daily closure, except toward the very end of the night.

Trade is very efficient at the close, and traders are rational and strategic. Therefore, in

periods leading up to the closure, traders would like to delay trade in order to trade very

cheaply at the close. This incentive to delay trade is so strong that, in the plotted example,

there is no trade in the periods just preceding the close. Empirically, this is consistent

with Bogousslavsky and Muravyev (2023), which finds that illiquidity is seven times higher

between 3:30 and 3:45 than at the close.

In trading periods near the start of the trading day, undesired flow costs and liquidation

risk throughout the day are sufficiently large that it is worth incurring some price impact to

optimize positions, and there is non-zero trade. When trade is continuous, trade aggressive-
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Figure 2. Trading Around the Close
We plot the aggressiveness of traders at the close, |cT |, where closer to 100% is closer to
perfect competition, with a blue dotted line, and the percentage of the trading day where no
trade endogenously happens leading up to the close with an orange solid line. In Panel A,
we plot these two quantities as a function of the market size, N . In Panel B, we plot these
two quantities as a function of the percentage of the day where the market is closed, ∆/K.
The continuous trade version of the blue-dotted line is equation 11, and the continuous trade
version of the solid-orange line is equation 10. We use r = 1/30 and K = 1, 000 for both
plots. In Panel A, we set ∆/K = 73%, and in Panel B, we set N = 100.

ness is the same during this time, whether there is a closure or not, which can be seen by the

solid and dotted orange lines being indistinguishable. When trade is slower, there is some

oscillation in aggressiveness around the level of aggressiveness in the 24/7 trade model (see

property 4 of Proposition 1). If liquidity is better next period, agents are less willing to trade

now, which lowers aggressiveness and liquidity this period. If liquidity is poor next period,

agents are more willing to trade now and incur further price impact. So, the non-stationarity

of the trader’s problem generates an oscillation that increases in magnitude as the closure

approaches. Overall, this oscillation is relatively small in magnitude and can be seen by the

dashed blue line alternating below and above the solid blue line.

In Figure 2, we study trade aggressiveness at the close and the length of the endogenous

no-trade period. We study these two quantities as functions of the number of traders and
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the length of the overnight closure. The lines in the plot are the discrete-trade versions of

equations 10 and 11. Panel A studies how these endogenous quantities change as the market

grows in size. First, we measure trade aggressiveness by the fraction of excess inventory that

is sold at the close, |cT |, which is plotted as a dotted blue line. The closer this value is to 100%,

the closer the model is to perfect competition, and the more efficiently the asset is traded

at the close. As the market becomes larger, price impact decreases as demand is dispersed

across more traders. Very quickly, the majority of the excess inventory is reallocated in any

given period, including the close.

The orange line in Panel A is the length of the no-trade period prior to the closure.

For the parameters considered, and when there are fewer than roughly 75 traders, there

is no trade apart from at the closing auction. Then, as the number of traders increases,

the fraction of the day with endogenously no trade decreases towards zero. As the market

grows, price impact decreases, making it less costly to trade in any period before close and

minimizing the relative benefits of coordinated liquidity at the close. For sufficiently many

traders, the length of the no-trade period is zero by Proposition 1, although this number is

not reached in Panel A.

In Panel B, we show that as the length of closure increases, trade aggressiveness and

the efficiency of trade at the close increase. As the length of closure increases, so does the

willingness of traders to incur price impact at the close. Eventually, the closure is so long

that there is only trade at the close, and the line flattens. By similar logic, the length of

the no-trade period increases as the efficiency of the closing session improves, as there is a

greater incentive to postpone trade. Eventually, there is only trade at the close, which is

mechanically moved towards the open for ∆ large enough, when the orange line has a slope

of −1.

D. A Simulation of the Models

To examine the inventory paths that different market structures induce for traders, we

simulate a trading day for a market with ten traders. We run a single simulation for two

scenarios: first, when trade occurs for the first 6.5 hours of the day and is followed by a 17.5

hour closure, and second, when trade is 24/7. Each trader receives the same shocks to their

inventory position in the two scenarios. The only difference between the two scenarios is the

endogenous change in their strategies when there is a daily closure. We set the initial excess
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(a) Simulation with ∆ = 17.5 hours of night (b) Simulation with trading 24/7 (∆ = 0)

Figure 3. Simulation With and Without Closure
These figures plot excess inventory paths under the same simulated shocks over a single day
for ten traders, N = 10, but the left plot has a closure of 17.5 hours, and the right plot
allows trade 24/7. The desired excess inventory position (the solid black line) is zero, and
the shocks to traders’ private values are the same across plots and occur every period right
after trade. The parameters used are σ = 1, r = 10%, K = 1, 000, and γ = .4.

inventory positions to be equally spaced between −.9 to .9 for the N = 10 traders.

The results of these simulations are plotted in Figure 3. Let us start with Figure 3(a).

While there is noise in the traders’ inventory positions during the trading day due to shocks

to their desired position, at the close, there is a large drop in the amount of excess inventory

held across traders. This drop results from the coordinated trade and liquidity a closure

induces.

Using the same shocks, we plot how the trader’s excess inventory position would have

endogenously evolved in a model with 24/7 trade in Figure 3(b). Without market closure,

traders strategically break up their orders over time, spreading out liquidity and trading

slowly toward their desired inventory positions. Without the coordination of liquidity a

closure provides, traders never substantially close the gap between their current and desired

inventories. They do appear to be in better positions by the end of the day, however. From

this simulation alone, it is unclear which scenario the traders would prefer ex ante. In

Section IV, we will formally study trader welfare as a function of the market structure.
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Figure 4. Volume Throughout the Day
This figure is the percentage of the expected daily trading volume in each 30-minute bin
when trading occurs for 6.5 hours a day. We simulate 1,000 trading days and plot the
average fraction of daily volume in each bin. This example uses N = 500, r = 10%, σ = 1,
K = 1, 000, and ∆/K = 17.5

24
.

E. Volume

Intraday volume patterns can be used to summarize the intuition of the model. A robust

empirical pattern is the U-shaped (smirk) pattern of trading volume throughout the day

(e.g., Chan et al. (1996), Jain and Joh (1988)).

Due to the inability to trade overnight, the absolute gap between any trader’s current and

desired inventory position grows overnight in expectation. Therefore, although trade is not

very aggressive in the morning in the sense that traders exchange a small percentage of the

gap (small |ck|), due to the large average gap, they still trade a large quantity of the asset.

During the middle of the day, traders are neither particularly aggressive nor have a large

excess inventory position. Finally, at the close, traders become very aggressive and close the

gap significantly, resulting in a large increase in trading volume (see, e.g., Bogousslavsky and

Muravyev (2023)).

Figure 4 demonstrates the above reasoning. Figure 4 plots the expected fraction of the

total daily volume in each 30-minute trading bucket by computing the average volume in
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simulations of the model. To match the NYSE, we assume the trading day is 6.5 hours.

If trade volume were uniformly distributed throughout the day, you would expect about

7.7% of the daily volume in each bin. Yet, we see significantly more near the open and

close. About 17% of the daily volume is clustered in the first 30 minutes, and about 14% is

clustered in the last 30 minutes.

IV. Welfare

We now formally study whether traders are better off ex ante in a market structure with a

daily closure of some length or in a market structure that allows for 24/7 trade. We do this by

studying the aggregate ex-ante welfare of traders. Specifically, we define welfare as the sum

of traders’ ex-ante expected value functions. As each trader’s value function aggregates their

expected profits net of inventory costs, the higher its value, the more efficient the market is.

In this section, for simplicity, we assume that the initial inventory position for each trader is

zero, zi0 = 0, which implies that Z̄ = 0. We assume each initial private value is i.i.d. N(0, σ2)

distributed. We will also focus on the continuous trade version of the model for simplicity.

The discrete trade version of the model has qualitatively similar welfare results.

As a first benchmark, we define the first-best (efficient) welfare as that which continuously

allocates each trader their inventory position in the competitive benchmark. This bench-

mark is what a benevolent social planner would achieve if both frictions in the model were

eliminated by making trade perfectly competitive and allowing trade to occur continuously

and 24/7. Efficient welfare is

W e :=
N∑
i=1

E
[
V e(zi = 0, wi, W̄ )

]
=

σ2(N − 1)(r + λ)

2γ
. (14)

Next, we quantify welfare under the market structure with 24/7 trade. The 24/7 welfare is

W 24/7 :=
N∑
i=1

E
[
V (zi = 0, wi, W̄ )

]
= Nα0 + σ2

(
Nα5 + α6 + α9

)
, (15)

where the αi’s determine the equilibrium value function, given in Internet Appendix IA.4

when ∆ is set to 0. Finally, we quantify the welfare achieved from an equilibrium market

structure with a market closure for a fraction ∆ of the day. Welfare under a market closure

of length ∆ is
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Figure 5. Welfare Comparative Statics
Above is the percent change between welfare under a market closure and welfare under 24/7
trade as we vary the length of the closure in the equilibrium of the continuous trade model.
Panel A plots this relationship for two different numbers of traders. Panel B plots this
relationship for two different rates of shocks. Both plots use r = 10%. In Panel A, λ = 10.
In Panel B, N = 10.

W (∆) :=
N∑
i=1

E

[
1

1−∆

∫ 1−∆

0

Vt(z
i = 0, wi, W̄ )dt

]
=

1

1−∆

∫ 1−∆

0

Nα0(t) + σ2

(
Nα5(t) + α6(t) + α9(t)

)
dt, (16)

where the αi’s determine the equilibrium value function, given in Internet Appendix IA.4.

Since welfare with a closure is a non-stationary function of time, we compute welfare by

averaging across time periods in the trading day. In effect, time is an additional state variable,

and, in addition to randomizing across initial values of wi and W̄ , we also randomize across

the initial time at which the trader begins trading.

A. Welfare Comparative Statics

In Figure 5, we plot the percentage change in welfare from a market structure with 24/7

trade to welfare from a market structure with a closure. We display the percentage change

as a function of the closure length. Panel A plots the relationship for two different market
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sizes, and Panel B plots the relationship for two different private value shock arrival rates.

In Panel A, we show that welfare changes are more negative for the larger market, par-

ticularly for long closures. In larger markets, the costs of strategic trade are lower. There is

not a substantial price impact at any period throughout the day, and, therefore, closure is

relatively more costly. In small markets, the benefit of the coordinated trade in the closing

session offsets relatively more of the cost of the closure, since liquidity is otherwise spread

thin throughout the day. In fact, there is an interior optimal length of closure near 5% of

the day. There is also an interior optimal length of closure in the larger market, although it

is very small. We will discuss the interior optima further in Section IVB.

In Panel B, welfare differences are displayed for different rates of shocks to private values.

If the shocks are infrequent, closure benefits traders. If the frequency of shocks is higher, the

lower the relative welfare with a long closure. This is due to the fact that the average gap

generated overnight between current and desired inventory widens as the length of closure

increases and as the rate of shocks increases. If there are no shocks overnight, then the

probability that your inventory position, which tends to be good at the close, is near the

desired position at the following open is high. But if there are many shocks at night, then

the position you start at the beginning of the next day will be suboptimal, which will be

costly to slowly correct in the subsequent trading days. Again, even the case with λ = 100

has an interior optimal length of closure, although it is small.

We have assumed that the parameters governing the rate of shocks or holding costs

are the same overnight as during the trading day, although there may be reason to believe

they differ. In Internet Appendix IA.2, we relax this assumption and show welfare moves

intuitively as these parameters change from day to night.

B. Is 24/7 Trading Better?

While there is some length of closure that is better than 24/7 trading in Figure 5, it

is not obvious whether that is always the case. Proposition 3 shows that there is always a

market design with a daily market closure of some length that is strictly better than having

trade occur 24/7.

PROPOSITION 3: There always exists a closure length, ∆ ∈ (0, 1), such that the ex-ante

welfare of a market design with a market closure is greater than that of a market design of

24/7 trading, where welfare is measured by Equation 16.
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Figure 6. Optimal Length of Closure
We plot the ex-ante welfare maximizing length of closure, ∆∗, that maximizes Equation 16.
We assume that σ and γ are constant across day and night and use r = 10%.

The proof is found in Internet Appendix IA.4.4. Within the confines of our model and

assumptions, Proposition 3 shows that 24/7 is never optimal for traders, and there is always

a benefit of at least a short closure.

How long should the closure be? Proposition 3 gives no guidance on that dimension.

While we do not provide closed-form expressions for the optimal length of the closure, ∆∗,

we investigate its value numerically in Figure 6. In Figure 6, we plot the optimal length of

closure as a function of the size of the market, N . We plot separate lines as a function of the

information arrival frequency, λ. The plot shows that in smaller markets, those with fewer

traders or slower information arrival, the optimal length of closure can be fairly long at over

40%. However, as the number of traders or the frequency of information arrival increases, the

optimal length of closure approaches zero quickly. It is worth noting that it never actually

reaches zero but becomes economically equivalent to 24/7 trade in larger markets with a fast

rate of information arrival.

Overall, the results of this section and Figure 5 suggest 24/7 trading is near optimal in

large markets. Traders in larger markets with frequent shocks to desired positions, such as

equities, cryptocurrencies, futures, and foreign exchange markets, are better off in the model
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with near 24/7 trade. A daily closure is useful in small markets where shocks are infrequent.

Asset classes such as corporate bonds or index CDSs fit this description well. In the next

section, we calibrate the model to large equity exchanges to study the implications of our

model for recent proposals to extend trading hours.

V. Calibration

To apply our model to the data, we calibrate key model parameters for several exchanges.

Then, we quantify the welfare gains or losses from changes in trading hours. More specifically,

we calibrate the number of traders per exchange, N , and the relative volatility of shocks to

private values between the day and night, σd/σn, allowing this value to differ from 1, as in

Internet Appendix IA.2. To estimate these parameters, we match some moments of intraday

volume in our model to the data. Given a closure length, the number of traders, and the

relative volatility from day to night, the model implies an expected volume in a given time

period as a fraction of the total expected volume in a day, as described in Appendix IA.4.1.7

We match these moments to moments from four different exchanges: NYSE, NYSE Arca,

Nasdaq, and CBOE EDGX. We select these four exchanges as the NYSE is the largest

registered U.S. equity exchange, and the Nasdaq, CBOE EDGX, and NYSE Arca have

announced plans to extend to 24/5, 24/5, and 22/5 trading days, respectively.

We need two linearly independent moments to identify our two parameters. We use the

average fraction of daily volume per exchange in the first 3 hours and last 3 hours, which we

estimate from TAQ data.8 The fraction of total volume that is in the first and last 3 hours of

trade helps to identify N . If N is smaller, then two moments are closer to summing to 100%.

The ratio of instantaneous volatilities, σd

σn
, helps to identify how much volume is in the first 3

hours relative to the last 3 hours. The higher the ratio of instantaneous volatilities, the more

volume will concentrate in the last 3 hours of trade, and vice versa. We use the calibrated

parameters to study counterfactual daily closure lengths. We fix the total daily private value

volatility per exchange to be constant by assuming σd solves σ2
T = (1−∆)σ2

d +∆σ2
n so that

7The moments we have chosen only identify the relative magnitude and not the level of volatility from
day to night. Percentage changes in welfare also depend only on the relative magnitude, not the level. To
make the computation of volume more tractable, we use the continuous trade model and assume shocks to
private values occur continuously as a Brownian motion. Assuming shocks are Brownian is a limiting case
of the jump process for private values as the arrival rate approaches infinity.

8The middle section is a linear combination of the other two moments, which provides no new information.
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Table I
Calibration

This table compares the welfare of the current market closure to that of 24/7 trading, 23/7
trading, or the optimal length of closure by using the calibrated volatility and number of

traders per exchange. N̂ denotes the estimated size of the market, and σ̂d

σn
is the relative

instantaneous volatilities during the day and night. We assume that total volatility is con-
stant across closure lengths so that σd solves σ2

T = (1 − ∆)σ2
d + ∆σ2

n. The optimal length
of closure, ∆∗, is that which maximizes welfare defined by Equation 16 given the calibrated
parameters and subject to the total volatility constraint. We assume r = 10%, v = 0, and
zi0 = 0 for all calibrations.

Exchange
Current
Length of
Night (∆)

N̂ σ̂d

σn

Optimal
Length of
Night (∆∗)

% Welfare
Change from
∆ to 23/7

% Welfare
Change from
∆ to 24/7

% Welfare
Change from

∆ to ∆∗

NYSE 72.9% 208 1.28 0.469% 2.053% 2.057% 2.057%
Nasdaq 72.9% 325 1.32 0.480% 1.997% 2.002% 2.002%
NYSE Arca 72.9% 303 1.23 0.123% 2.128% 2.133% 2.133%
CBOE EDGX 72.9% 191 0.87 0.137% 2.606% 2.612% 2.612%

total volatility is constant as a function of closure lengths.

We estimate the welfare change that would occur if trading were to operate 23/7, as

proposed by 24X. This value is also close to the proposed trading hours for NYSE Arca,

CBOE EDGX, and Nasdaq. Then, we compare this counterfactual welfare to the estimate

of welfare under the current 17.5-hour closure. We also compare the welfare change from

the current market structure to 24/7 trade and, finally, from the current to an optimal

closure length. The optimal length of closure, ∆∗, is that which maximizes welfare defined

by Equation 16 given the calibrated parameters and subject to the total volatility constraint.

The results are in Table I.

Table I suggests that, in the model, extending trading hours results in an increase in

the welfare (allocative efficiency) of the market. Intuitively, as we have calibrated to large

exchanges, the liquidity coordination channel is not as important as the ability to trade for

a relatively large fraction of the day since the market is already fairly liquid. Our calibration

suggests that the NYSE and other large equity exchanges, such as the London and Tokyo

stock exchanges, should consider extending their trading hours. In thinner markets, such

as microcap equities, smaller international exchanges, or electronic corporate bond trading,

we would expect a calibration to imply that moving to 24/7 trade would decrease trader
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welfare. Interestingly, the welfare gain comes mostly from extending to 23/7, with only a

very small additional gain from going all the way to 24/7 or the optimal length of closure.

It is worth noting that the optimal length of closure is an interior length of 2 to 7 minutes a

day, which is very short. In Section VII, we further discuss how additional forces may affect

these implications.

VI. Heterogeneous Information

In this section, we summarize an extension that allows for heterogeneous fundamental

information regarding the dividend. The main results are analogous to those in previous

sections, suggesting that our findings regarding the effect of a market closure on liquidity

and allocative efficiency are robust to the consideration of informational frictions. The

introduction of an information problem is done by adding two components to the model: a

stochastic liquidating dividend and private signals regarding its payoff. These components

generate a learning problem, discussed below, in addition to the inventory management

problem detailed in previous sections.

The liquidating dividend is now assumed to evolve according to a continuous-time random

walk. Jumps in the dividend vt are assumed to coincide with the random jumps in the private

value shocks and are N(0, σ2
D) distributed. Each trader receives private signals about these

jumps. If a jump in the dividend level occurs at time t, the signal is given by Ŝi
t = vt−vt−+ϵi,

where ϵi
iid∼ N(0, σ2

ϵ ). If jumps occurred at dates t1 < t2 < · · · < tk < t, trader i forms a signal

Si ≡
∑k

j=1 Ŝ
i
tj
at date t. Assume these normally distributed shocks are all independent of

each other and of all other shocks in the model. All other aspects of the model are the same

as before.

We focus on daily-periodic, linear, and symmetric strategies and conjecture that equilib-

rium demand schedules in period k take the following form:

Di
k(z

i, wi, Si, p) = ak + bkp+ ckz
i + fk(w

i + ASi).

Based on these demand schedules, in equilibrium, any investor will observe W̄ +AS̄ directly

from the price. Note that there is no time dependence in A in our conjectured demand

schedule. Along with the assumption that both the dividend value and private values are

random walks, this is an important assumption. If there were time dependence in A, in-

vestors’ conditional expectations of the dividend would no longer be a simple function of
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a few state variables, namely wi, Si, and W̄ + AS̄. In particular, time dependence in A

would effectively force beliefs to be a state variable of the problem. Any investor i’s beliefs

would depend on other investors’ beliefs, which in turn depend on investor i’s beliefs. This

loop iterates, leading to an infinite regress of beliefs problem, which the literature on market

design in dynamic settings has struggled to resolve.9

Given the above demand schedules, each investor solves a learning problem. Traders

observe zi, wi, Si and W̄ + AS̄, from which they infer the level of the dividend. Define the

information spanned by these signals to be the information set Ii. Then, conditional beliefs

at time t = kh of the value of the dividend are

Et[w
i
t + vt|Ii] = wi

t +B1S
i
t +B2(W̄t + AS̄t),

for some constants, B1 and B2. B1 and B2 unsurprisingly depend on A, as the relative

weight of the signal from the price on W̄ and S̄ affects the learning problem. Conversely,

A depends on B1 and B2, as optimal demand schedules depend on beliefs. This fixed-point

problem leads to a straightforward nonlinear equation for A.

We provide the solution to this model in the Appendix B. It is fairly straightforward to

show that if the learning problem goes away, in the sense that B1 = B2 = 0, the equilibrium

reduces to that described in Proposition 1. Defining si = 1
α
(wi+ASi) for a constant α, with

a slight relabelling of the demand function, equilibrium demand is given by

Di
k(p

∗
kh) = ck

(
zikh −

(r(Nα− 1)

γ(N − 1)
(sikh − s̄kh) + Z̄

))
.

sik is simply a weighted sum of trader i’s private value and their signal. α is an endogenous

measure of the amount of adverse selection in the market. When α = 1, there is no adverse

selection, and traders learn no new information about the asset’s payoff from the price. As

α decreases, they put more weight on the signal inferred from the market and less on their

own information. We will show that the main result of this paper still holds when learning

is introduced. As the trading day comes to an end, traders trade aggressively towards their

desired allocations. As they do so, price impact decreases, further improving liquidity and

the incentives to trade aggressively in the final period.

We plot trading intensity and welfare in Figures 7 and 8. We consider the model of

this section alongside two models: one in which σϵ is set to 0, thereby eliminating adverse

9See also Du and Zhu (2017b), footnote 6. For recent progress, see Rostek et al. (2025).
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selection, and another with adverse selection but without market closure. In Figure 7, we

consider trading intensity by plotting
∏k

j=0(1+cj) as a function of k. This quantity measures

how much of the gap between a trader’s initial inventory and initial desired inventory has

closed between the start of the trading day and time t, assuming no shocks have arrived in the

interim. For both models with closures, trade is most aggressive in the final period. Perhaps

unsurprisingly, trading intensity with adverse selection is slightly lower than without. Traders

avoid price impact as purchasing the asset increases others’ beliefs about the liquidation

value, making them even less willing to sell the asset. It is worth noting that this slower

trading is primarily due to heterogeneity, rather than simply uncertainty. In particular, in

a model in which signals are public, trading intensity is the same as in a model with no

uncertainty about the dividend, due to the risk-neutrality of the traders.

In Figure 8, we see that market closure continues to have consequences for welfare.

Welfare is larger with a long closure if the rate of information arrival is sufficiently low.

Moreover, if the number of traders is sufficiently small, the results of the left panel suggest

a closure of roughly 10% of the day is optimal. Relative to Figure 5, welfare with a market

closure is slightly better relative to welfare under 24/7 trade when agents have heterogeneous

information. This is not particularly surprising since the coordination a closure provides near

the end of the trading day is relatively more important when liquidity is already spread thin

due to heterogeneous information. Overall, the primary mechanisms of this paper are present

when there is heterogeneous information regarding asset values.

Although not the focus of this paper, it is worth discussing the potential implications

the model may have for price efficiency. One can think of price efficiency as the magnitude

of a trader’s conditional variance of the dividend given their signals and the price, relative

to the unconditional variance of the dividend, that is, Vart(vt|Ii)
Var(vt)

. This value jumps down

whenever trading opens, as traders infer information from the price, and increases on average

whenever the market closes. Thus, market closure hinders price efficiency simply because

prices are not observed overnight, although price efficiency returns to its level with 24/7

trade as soon as the market is reopened and prices are observed. Although worth pointing

out, this is not a particularly surprising finding, as the information structure we consider is

simple enough to make the model tractable. Extensions in which some traders had higher-

quality signals than others might yield interesting results. Implementing extensions with

more interesting information structures is not a trivial problem. The infinite regress of
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Figure 7. Trading Intensity with Heterogeneous Information
This figure plots trading intensity for various regimes throughout the day. The y-axis is the
expected percentage of time 0 excess inventory left at time t in the day. If there is a closure,
its length is 31.25% of the day. The parameters are K = 16, N = 100, and r = 1/30.
Moreover, σD = σ = 1, σϵ = 0.1, and λ = 1. If information is homogeneous, σϵ is set to 0.

beliefs problem mentioned above, which arises even with relatively simple complications

of the information structure, makes tractable extensions challenging to formulate. In the

absence of these difficulties, the impact of market closure on the dynamic interaction between

allocative efficiency, liquidity, and price efficiency with heterogeneously informed investors

promises to yield very interesting research, which we leave to future study.

VII. Discussion of Other Policy-Relevant Forces

Our model studies welfare in a model of inventory management and price impact, a first-

order consideration in terms of trading costs for large traders. In fact, Frazzini et al. (2018)

finds that price impact is the largest trading cost large money managers face, and it leads

traders to break up larger orders into child orders that take on average 2.7 days to fully
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Figure 8. Welfare Comparative Statics with Heterogeneous Information
Above is the percent change between welfare under a market closure and welfare under 24/7
trade as we vary the length of the closure, in the equilibrium of the continuous trade model
with heterogeneous information. Panel A plots this relationship for two different numbers of
traders. Panel B plots this relationship for two different rates of shocks. Both plots assume
σD = σ = 1, σϵ = 0.1, and r = 10%. In Panel A, λ = 10. In Panel B, N = 10.

execute. In this section, we discuss some additional forces that may be directly relevant

for exchanges or policymakers considering modifications to trading hours. Although not

explicitly modeled, we argue that the consideration of many of these forces would likely

reinforce our main results. Namely, in large equity exchanges, our calibration suggests

that extending hours will be beneficial for large traders. More generally, a daily closure

coordinates trade, implying the optimal closure is non-zero, and may be large in smaller

markets.

A. Exchanges’ Incentives

The social planner perspective we take allows us to study what traders prefer in counter-

factual market structures, and whether a regulator should approve a given change to trading

hours. Yet, exchanges ultimately determine their trading hours. To study the incentives

of an individual exchange to change its trading hours, we model the exchange as a player

who chooses the length of closure to maximize expected volume before any trading occurs.
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One major source of revenue for exchanges is volume-related fees. Therefore, the choice of a

volume-maximizing closure is an approximation of their decision problem.10

Internet Appendix IA.4.2 examines this decision problem. In general, the optimal closures

from the perspectives of a trader and an exchange are similar. Volume is maximized with

one trading session a day in markets with few traders, but for medium to larger markets,

24/7 trade maximizes volume. Table D.1 studies the decision problem specifically in the

calibration of Section V. The calibration suggests that extending trading hours will increase

volume, since these exchanges are large. It is worth noting that this result is not entirely

obvious. Despite a large percentage increase in trading hours from 6.5 hours a day to 23

or 24 hours a day, the percentage increase in trading volume is much smaller due to the

endogenous response of trading strategies.

B. Market Fragmentation

While the analysis discussed above suggests that a single exchange’s optimal decisions

tend to coincide with the optimal market structure for traders, in practice, there are multiple

exchanges. This leads to various complications. Exchanges compete with one another,11 and

traders can also split orders across multiple exchanges. Chen and Duffie (2021) model frag-

mentation in a demand-submission game, and they introduce noise traders on each exchange

so that prices across exchanges are imperfectly correlated. They are only able to solve the

dynamic model when the number of exchanges is set to its optimal value and trade is efficient

(the asset is perfectly reallocated after each trading session). If trade is perfectly efficient,

there is no room for the benefits of a daily closure. When trade is not perfectly efficient

and there is scope for benefits of a closure, there is the well-known problem of an infinite

regress of beliefs, first described in Vayanos (1999), which renders the solution of the model

intractable.

Fragmentation may help reduce the risk of holding inventory if exchanges do not perfectly

coordinate their trading hours. Indeed, the CME Globex index futures market already

operates 23/5, which would allow traders to hedge systematic risk during the current daily

10Other revenue sources such as co-location, listing and maintenance fees, and market data fees are all
more valuable if volume on that exchange is higher.

11The London Stock Exchange Group is considering extending trading hours to near 24/5 to com-
pete with U.S. exchanges, as firms have moved their primary listing to U.S. exchanges, which
have already proposed extending trading hours, https://www.theguardian.com/business/2025/jul/21/
london-stock-exchange-24-hour-trading-boost-market.
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market closure. Furthermore, many alternative trading systems (ATSs) operate outside of

current market hours, allowing some trading to occur. While this sort of fragmentation is not

directly modeled, it could be captured in reduced form through a lower marginal holding cost

parameter overnight, γn. For instance, hedging in index futures contracts will reduce risk

exposures to systematic risks in equities and derivatives markets, although it is important

to note that it will not fully eliminate risk. Hedging using index futures, for instance, can

be costly and imperfect due to price impact (e.g., Rostek and Yoon (2024)), remaining

idiosyncratic risk in equity markets, and remaining unhedgeable risks in derivatives markets

(Gârleanu et al. (2009)). Changes in the overnight holding cost are considered in Internet

Appendix IA.2. Our calibration in Section V assumes that holding costs are the same

overnight as during the day, which is, if anything, a conservative assumption. Increasing

the overnight holding cost, which is likely more realistic, would decrease the optimal length

of closure, reinforcing our finding that longer trading hours would be welfare-improving for

traders on large equity exchanges.

C. Firms

While we focus on the secondary market, many of the firm’s actions are influenced by

trading hours. Historically, firms prefer to release news and earnings and hold earnings

calls outside of trading hours to minimize short-term volatility while investors process infor-

mation. Many of the exchanges that have proposed extending hours suggest a short daily

closure, perhaps in part to accommodate this preference of firms and retain their listings.

In our model, shocks to private values or the common dividend value in the heterogeneous

information extension can be viewed in part as the result of firm announcements. To ac-

count for announcements occurring during a closure, our calibration allows the magnitudes

of shocks during the day and night to differ. Moreover, as we vary the length of closure in our

calibration, we fix the total daily volatility of shocks constant, so that we effectively consider

counterfactuals in which daily firm decisions are held constant. We further study the impli-

cations of heterogeneity in volatility between the day and night in Internet Appendix IA.2.

D. Closing Prices

The closing price of a security has become an important component of the financial

system. Closing prices are used to calculate the Net Asset Value (NAV) for mutual and
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open-end funds, for the settlement of many derivative contracts, and for calculating margin

and collateral requirements. Moving to 24/7 trading would require redefining this reference

point. Our model predicts liquidity is spread more thinly throughout the day when trade

is 24/7. Any higher price impact at a new reference point could result in larger price

swings, reducing price efficiency. This rationale supports retaining a non-zero daily closure

to concentrate liquidity and improve price robustness at the close. We discuss the information

structure and its relation to price efficiency in the current model in Section VI.

E. International Access

A common rationale for extending hours is to accommodate demand by international

investors. Section VIIA finds that, for liquid exchanges, extending trading hours increases

daily volume. However, that analysis does not account for the potential endogenous entry

of additional traders if trade were offered during their local business hours. Indeed, recent

studies suggest that, at least for some investors, the timing of their trades is related to local

business hours. For instance, Eaton et al. (2025) finds that 80% of ATS volume between

8:00 PM and 4:00 a.m. EST comes from Asia-Pacific investors. Further, deHaan and Glover

(2024) finds that retail investors just on the west side of a time zone trade less than those

just on the east side. In our model, as the number of traders increases, the gains from

liquidity coordination decrease, shortening the optimal closure. Endogenizing access would

likely strengthen the case for extended trading, though it would also create heterogeneity in

agent types, leading again to substantial modeling challenges related to heterogeneity and

infinite belief regress (e.g., (Vayanos, 1999)), as the distribution of inventory across types

would become a state variable.

F. Regulatory

As noted by many exchanges, extending hours would require regulatory and infrastructure

changes. The Depository Trust and Clearing Corp. (DTCC) and securities information

processor (SIP) are working to support trading beyond current business hours. These changes

are necessary so that securities law, such as Regulation National Market System (Reg NMS),

which mostly do not apply overnight, can be followed. For example, the Order Protection

Rule (Rule 611 of Reg NMS) does not currently apply overnight, as there is no NBBO
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disseminated by the SIP.12 A model with infrastructure adjustment or legal compliance

costs would presumably increase the minimum expected profit an exchange would require

to be willing to extend trading hours. However, extending regulatory protection, rules,

and market infrastructure to non-traditional trading hours could benefit execution quality

relative to the current paradigm, in which there is very little oversight and structure for

executing overnight orders through ATSs. These countervailing forces suggest the net effect

of incorporating regulatory factors in a framework such as ours is ambiguous.

G. Retail

deHaan and Glover (2024) finds that increased trading access leads to excess trading and

reduced capital gains for retail investors, though the net welfare effect is not obvious after

accounting for, for example, the subjective utility retail traders derive from being able to

trade. On the other hand, retail traders already trade overnight through brokers such as

Robinhood, Charles Schwab, and Interactive Brokers. Extending legal protections to these

trades may improve execution quality.

More generally, over 90% of retail marketable orders are internalized by wholesalers off-

exchange (Gensler, 2022), suggesting that changes in exchange hours will primarily affect

retail traders indirectly via their effect on wholesalers. If the allocative efficiency gains in

our model are passed on to retail traders through better pricing or execution, our calibration

suggests that extended trading hours would benefit retail traders on large equity exchanges.

VIII. Conclusion

This paper studies the effect of daily market closures on liquidity and allocative efficiency.

Market closures coordinate trade at the end of the trading day, and this coordination gener-

ates social benefits that can outweigh the costs of the restrictions closure imposes on trade.

Although in our model there is a non-zero length of closure that always improves welfare

relative to a market structure with 24/7 trade, for large markets with many traders and fre-

quent shocks to private values, this optimal length of closure is very short. Our calibration

suggests that a short closure of a couple of hours or less would improve welfare relative to

current trading hours in large equity exchanges.

12However, Best Execution and Interpositioning (FINRA Rule 5310) and the Manning Rule (FINRA Rule
5320) do currently apply to overnight trades.
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Appendix

A. Proof of Propositions 1-2 and Corollary 1

This appendix proceeds as follows. First, we set up the problem, which describes equi-

librium. Then, in Appendix A.1, we show the solution is unique after imposing a trembling-

hand refinement and characterize the solution, proving Proposition 1. Appendix A.2 proves

Corollary 1, and Appendix A.3 specializes to the case in which ∆ = 0, so that there is no

overnight period, to prove Proposition 2.

Under the assumption of linear demand schedules, and based on the form of the payoffs,

the value function will be linear-quadratic:13

Vk(z
j, wj, W̄ ) = ak0+ak1z

j+ak2w
j+ak3W̄+ak4(z

j)2+ak5(w
j)2+ak6(W̄ )2+ak7z

jwj+ak8z
jW̄+ak9w

jW̄ .

First, we characterize its solution.

Let us assume that bk > 0 for now. Then we will address what happens when bk = 0 at

the end of this section. The Bellman equation for every time t = kh, where t < T , is

Vk(z
j, wj, W̄ ) = max

Dj

{
−Djp∗t + (1− e−rh)(zj +Dj)(v + wj)− (1− e−rh)γd

2r
(zj +Dj)2

+e−rh
[
at+1
0 + ak+1

1 (zj +Dj) + ak+1
2 wj + ak+1

3 W̄

ak+1
4 (zj +Dj)2 + ak+1

5 ((wj)2 + λσ2) + ak+1
6 (W̄ 2 +

λσ2

N
)

+ak+1
7 (zj +Dj)wj + ak+1

8 (zj +Dj)W̄ + ak+1
9 (wjW̄ +

λσ2

N
)

]}
,

and for the last period, by periodicity, it is

VT (z
j, wj, W̄ ) = max

Dj

{
−Djp∗T + (1− e−rh(1+∆))(zj +Dj)(v + wj)

− (1− e−rh(1+∆))γn
2r

(zj +Dj)2 + e−rh(1+∆)
[
a00 + a01(z

j +Dj) + a02w
j + a03W̄

a04(z
j +Dj)2 + a05((w

j)2 + λ(1 + ∆)σ2) + a06(W̄
2 +

λ(1 + ∆)σ2

N
)

13One can apply a contraction mapping theorem to show the uniqueness of the solution to the trader’s
decision problem given the other trader’s demand functions. First, one can restrict the decision space
to a compact subset of the set of linear demand functions. Value iteration will map the set of bounded
continuous functions into itself, assuming a Feller-type condition regarding the continuity of the conditional
expectation of the continuation value and assuming boundedness is defined using a weighted norm of the
form ||f || = sup |f(t, z, w, W̄ )e−||(z,w,W̄ )||22 |. Then, using Blackwell’s conditions along with the Contraction
Mapping Theorem, one gets uniqueness on any compact subset of linear demand functions.
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+a07(z
j +Dj)wj + a08(z

j +Dj)W̄ + a09(w
jW̄ +

λ(1 + ∆)σ2

N
)

]}
.

The FOC for optimal demand in the first T − 1 periods is then

0 = −p∗t − λkD
j + (1− e−rh)(v + wj)− (1− e−rh)γd

r
(zj +Dj)

+ e−rh[ak+1
1 + 2ak+1

4 (zj +Dj) + ak+1
7 wj + ak+1

8 W̄ ],

and in the last trading session of the day

0 = −p∗T − λTD
j + (1− e−rh(1+∆))(v + wj)− (1− e−rh(1+∆))γn

r
(zj +Dj)

+ e−rh(1+∆)[a01 + 2a04(z
j +Dj) + a07w

j + a08W̄ ].

where λk :=
∂Φt

∂dj
= − 1

bk(N−1)
. Assume

Dj
k = ak + bkpt + ckz

j + fkw
j.

Market clearing implies the equilibrium price is

pt = −ak + ckZ̄ + fkW̄t

bk
,

and equilibrium demand is

Dj
k = ck(z

j
t − Z̄) + fk(w

j
t − W̄t).

Substituting these expressions into the FOC,

ak + ckZ̄ + fkW̄

bk
+

1

bk(N − 1)
(ck(z

j − Z̄) + fk(w
j − W̄ ))

+ (1− e−rh)(v + wj)− (1− e−rh)γd
r

((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ ))

+ e−rh
[
ak+1
1 + 2ak+1

4 ((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )) + ak+1
7 wj + ak+1

8 W̄
]
= 0,

and

aT + cT Z̄ + fT W̄

bT
+

1

bT (N − 1)
(cT (z

j − Z̄) + fT (w
j − W̄ ))

+ (1− e−rh(1+∆))(v + wj)− (1− e−rh(1+∆))γn
r

((1 + cT )z
j − cT Z̄ + fT (w

j − W̄ ))

+ e−rh(1+∆)
[
a01 + 2a04((1 + cT )z

j − cT Z̄ + fT (w
j − W̄ )) + a07w

j + a08W̄
]
= 0.
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Grouping common terms,

ak + ckZ̄

bk
− ckZ̄

bk(N − 1)
+ (1− e−rh)v +

(1− e−rh)γdckZ̄

r
+ e−rhak+1

1 − 2e−rhak+1
4 ckZ̄ = 0,

ck
bk(N − 1)

− (1− e−rh)γd(1 + ck)

r
+ 2e−rhak+1

4 (1 + ck) = 0,

fk
bk(N − 1)

+ (1− e−rh)− (1− e−rh)γdfk
r

+ 2e−rhak+1
4 fk + e−rhak+1

7 = 0,

fk
bk

− fk
bk(N − 1)

+
(1− e−rh)γdfk

r
− 2e−rhak+1

4 fk + e−rhak+1
8 = 0,

and similarly at period T . We show in the Internet Appendix IA.5 that αk
7 + αk

8 = 1 and

hence fk = −bk by the 3rd and 4th FOCs. This leads to the following expressions for the

parameters describing demand functions:

bk =
r
(
N − 2− (N − 1)e−rh(1− ak+1

7 )
)

(N − 1)(γd(e−rh − 1) + 2re−rhak+1
4 )

,

ck =
2 + (ak+1

7 − 1)e−rh −N(1 + e−rh(ak+1
7 − 1))

(N − 1)(1 + e−rh(ak+1
7 − 1))

,

fk =
r(1 + e−rh(ak+1

7 − 1))ck

γd(e−rh − 1) + 2re−rhak+1
4

,

ak = −ck(N − 2)Z̄

N − 1
+ bk

(
v(e−rh − 1)− e−rhak+1

1 +
ckγd(e

−rh − 1)Z̄

r
+ 2e−rhckZ̄a

k+1
4

)
.

The expression for ck simplifies to

ck =
1

(N − 1)(1 + e−rh(ak+1
7 − 1))

− 1.

Thus, given the coefficients describing the value function, the demand functions are known.

Let us now characterize the value function. Returning to the Bellman equation, we have

Vk = (ck(z
j − Z̄) + fk(w

j − W̄ ))(
ak
bk

+
ck
bk
Z̄ +

fk
bk
W̄ )

+ (1− e−rh)((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ ))(v + wj)

− (1− e−rh)γd
2r

(((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )))2
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+ e−rh
[
at+1
0 + ak+1

1 ((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )) + ak+1
2 wj + ak+1

3 W̄

ak+1
4 ((1 + ck)z

j − ckZ̄ + fk(w
j − W̄ ))2 + ak+1

5 ((wj)2 + λσ2) + ak+1
6 (W̄ 2 +

λσ2

N
)

+ak+1
7 ((1 + ck)z

j − ckZ̄ + fk(w
j − W̄ ))wj

+ak+1
8 ((1 + ck)z

j − ckZ̄ + fk(w
j − W̄ ))W̄ + ak+1

9 (wjW̄ +
λσ2

N
)

]
Matching coefficients in the Bellman equation,

ak0 = −Z̄
ckak + c2kZ̄

bk
− ck(1− e−rh)vZ̄ − (1− e−rh)γd

2r
c2kZ̄

2

+ e−rhat+1
0 − e−rhak+1

1 ckZ̄ + e−rhak+1
4 c2kZ̄

2 + e−rhak+1
5 λσ2 + e−rhak+1

6

λσ2

N
+ e−rhak+1

9

λσ2

N

ak1 =
ckak + c2kZ̄

bk
+ (1− e−rh)(1 + ck)v +

(1− e−rh)γd
r

(1 + ck)ckZ̄

+ e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄a

k+1
4

ak2 =
fkak
bk

+
fkck
bk

Z̄ + (1− e−rh)(fkv − ckZ̄) +
(1− e−rh)γd

r
ckfkZ̄ + e−rhfka

k+1
1 + e−rhak+1

2

− e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)fkv −
(1− e−rh)γd

r
ckfkZ̄ − e−rhfka

k+1
1 + e−rhak+1

3

+ e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

8 ckZ̄

ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)fk −
(1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

5 + e−rhak+1
7 fk

ak6 = −f 2
k

bk
− (1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

6 − e−rhak+1
8 fk

ak7 = (1− e−rh)(1 + ck)−
(1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck)

at8 =
ckfk
bk

+
(1− e−rh)γd

r
(1 + ck)fk − 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
8 (1 + ck)

at9 = fk

(
fk
bk

− (1− e−rh) +
(1− e−rh)γd

r
fk − 2e−rhak+1

4 fk − e−rhak+1
7 + e−rhak+1

8

)
+ e−rhak+1

9

Now let us address what happens when bk = 0. In this case, trader j is allocated 0 demand

in equilibrium in period k, and it is straightforward to see that the value function coefficients
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obey the same set of recursive equations as above, simply with ak, ck, fk, fk/bk all set to 0.

The joint solution of these recursions, along with the expressions for ak, bk, ck, fk, char-

acterizes the equilibrium. We give simplifications of these recursions in Internet Appendix

IA.5.

A.1. Uniqueness, Existence and Properties of the Equilibrium Solution

In this section, we begin by providing properties of a7, ck, and fk that must be satisfied

for trade to occur at a date k. These properties show that the existence of a non-zero trade

equilibrium at date k can be reduced to a simple condition on a
k+1(mod T )
7 .

Using this condition, we formulate a recursion for a7 and show it has a unique solution.

There can be other equilibria, but by the unique solution to this recursion, they must

occur in periods in which there is also an equilibrium in which trade occurs. We then proceed

to show that these equilibria do not satisfy our trembling-hand refinement.

Last, we conclude by providing some additional properties of the solution, which prove

properties 1-4 in Propostion 1.

Properties required for trade in linear demand schedules:

This section first shows that the equilibrium c, f and a7, a4 must satisfy certain restric-

tions for trade to occur at a given date, then discusses the existence of the solution.

Suppose we are at period k < T. The case k = T is analogous. We occasionally drop k

subscripts to ease notation. Suppose all other traders submit demand curves with negative

slope bk at period k.

The SOC for demand optimization is given by

1

b(N − 1)
− (1− e−rh)γd

r
+ 2e−rhak+1

4 < 0

First, note since f/b = −1, we must have f > 0 in equilibrium. By the third FOC above,

this fact combined with the SOC implies

(1− e−rh) + e−rhak+1
7 > 0.

Then, by the expression for f , both c and γd(e
−rh − 1) + 2re−rhak+1

4 must have the same

sign. Now, the second FOC implies

ck
bk(N − 1)

=
(1− e−rh)γd(1 + ck)

r
− 2e−rhak+1

4 (1 + ck).
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If c ≤ −1, the LHS is positive while the RHS is negative. So c ≥ −1. This fact implies, as

hinted at in discussions above, that a7 > 0 in an equilibrium with trade at k.

Now since c and γd(e
−rh − 1) + 2re−rhak+1

4 have the same sign, we can analyze γd(e
−rh −

1) + 2re−rhak+1
4 to determine the sign of c. Let’s consider the case k = 0. Other cases are

similar.

a04 = −(1− e−rh)γd
2r

(1 + c0)
2 + e−rha14(1 + c0)

2

= −(1− e−rh)γd
2r

(1 + c0)
2 − (1− e−rh)γd

2r
e−rh(1 + c0)

2(1 + c1)
2 + e−2rha24(1 + c0)

2(1 + c1)
2

= · · ·

= −(1− e−rh)γd
2r

k∑
t=0

e−trh

t∏
i=0

(1 + ci)
2 + e−(k+1)rhak+1

4

k+1∏
i=0

(1 + ci)
2

for k ≤ T − 1. Iterating to k = T and beyond is similar. In order for positions to be non-

explosive functions of past positions, based on the expression for equilibrium demand, we

only consider equilibria that imply
∏k

i=0(1 + ci) → 0 as k → ∞. Note that this also implies,

taking the limit in the expansion above, that a04 < 0. One can show ak4 < 0 similarly.

This, in turn, implies c < 0 if trade occurs at period k. It’s worth noting that c < 0 will

imply
∏k

i=0(1 + ci) → 0, where one imposes periodicity in the limit in the obvious way.

Thus, we’ve shown that in equilibrium, a7 must be positive, and c must be between −1

and 0.

Conversely, if solutions with positive a7 and c between 0 and -1 exist and satisfy the FOCs

above, this then allows for a unique solution for a4, since its recursion is linear. Solutions

of a7, c, a4 yield solutions for b and f . The corresponding solution for bk will be negative in

periods in which ck is negative, since we show below that the recursions above imply ck/bk

is a positive constant. Moreover, we show below that ak/bk = v, implying a solution for b

yields solutions for a. The remaining recursions for the value function are linear and have

simple unique solutions. To sum up, solving the model reduces to solving for a7.

Existence and uniqueness of a particular equilibrium:

Let us adjust the recursions for a7 above to be more precise regarding in which periods

there is no trade. Once the equilibrium value of a7 is determined, the rest of the parameters

determining the equilibrium can be pinned down as described above. In particular, we will

frequently make use of the fact that the expression for ck in periods with trade must be the
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same function of ak+1
7 as before.

Note if 1

(N−1)(1−e−rh+e−rhak+1
7 )

> 1, the arguments above imply there is no solution for

trade at k in downward sloping demand curves, because the solution for ck and hence bk

would be positive. This condition reduces to

ak+1
7 < 1− N − 2

e−rh(N − 1)
,

so that we can redefine the recursion for ak+1
7 when we don’t require trade every period to

ak7 =

1− e−rh + e−rhak+1
7 if ak+1

7 ≤ 1− N−2
e−rh(N−1)

1

(N−1)2(1−e−rh+e−rhak+1
7 )

if ak+1
7 > 1− N−2

e−rh(N−1)

= min{1− e−rh + e−rhak+1
7 ,

1

(N − 1)2(1− e−rh + e−rhak+1
7 )

}.

Define f to be the right-hand side of this expression as a continuous, piecewise-defined func-

tion ak+1
7 . This recursion corresponds to the model in which, if there is no trade equilibrium at

k in downward-sloping demand curves, there is no trade at k. If there is a trade equilibrium,

the corresponding value of ak7 is selected.

Moreover, f is a contraction from [0,∞) to itself. One can argue this as follows. f is

increasing if at+1
7 ≤ 1 − N−2

e−rh(N−1)
and decreasing otherwise. Moreover, on the first region,

its slope is e−rh and on the second region, its slope is decreasing and maximized when

at+1
7 = max{1− N−2

e−rh(N−1)
, 0}. Its slope at this point is also strictly less than 1. Therefore, it

is straightforward to see that f is a contraction.

Then, we can iterate the recursions for a7 T times to write at7 as the solution of a fixed

point problem, by periodicity. Note that the recursion at period T must be appropriately

adjusted to account for the overnight period. This fixed point function is the composition

of functions that are contractions, and hence at7 is the fixed point of a contraction mapping.

Thus, by the Contraction Mapping Theorem, there’s a unique solution to at7 and, therefore,

the sequence of a7’s.

Hence, there is a unique solution to the problem for which trade at any period is only

abandoned if there is no equilibrium in downward-sloping demand curves in that period.

Below, we show that the multiple equilibria that arise when traders can submit demand

curves equal to 0, even when there are equilibria that involve trade in that period, do not

survive the trembling-hand refinement. Therefore, the fixed point problem described in this

48



section characterizes the equilibrium of this paper.

Trembling-hand refinement:

In this section, we will show that a form of the trembling-hand refinement rules out

equilibria in which players choose to submit uniformly 0 demand curves in periods in which

there is also an equilibrium in which trade occurs. In conjunction with the uniqueness result

of the previous section, this implies that under the refinement, there must be a unique

equilibrium.

Consider the optimization problem of investor j at a period t < Th. The case t = Th

is similar. Suppose there are two equilibria at time t, one with zero trade (and uniformly 0

submitted demand curves), and the other with non-zero trade. Suppose that with probability

q the N − 1 other traders play the non-zero trade equilibrium in the current and future

periods. With probability 1− q, the other N − 1 traders play the equilibrium with 0 at time

t in current and future periods. The trembling-hand refinement we consider will require that

as q goes to 0, the optimal demand submission of trader j at time t also converges to a

demand submission uniformly equal to 0.

We consider a trembling-hand refinement in which players tremble simultaneously. If

players tremble independently, there is a non-zero probability that only one player submits

a non-zero demand curve. In two-player demand submission games, the non-existence of

linear equilibria is well-known (e.g., Du and Zhu (2017a)). To avoid these issues, we assume

simultaneous trembling.

The optimization problem for every time t = kh, where t < T , is

max
Dj

{
E

[
−Djp+ (1− e−rh)(zj +Dj)(v + wj)− (1− e−rh)γd

2r
(zj +Dj)2

+e−rh

[
Ṽk+1(z

j +Dj, wj
(k+1)h, W̄(k+1)h)

]]}
,

where the expectation is over which equilibrium the other traders choose, and Ṽk+1 denotes

that the continuation value may differ depending on the equilibrium chosen by other players.

Note, demand curves are only contingent on the price, not, for instance, which equilibrium

other players might tremble to.

Allocations are constrained such that the market clears. Therefore, we can formulate the

optimization problem in terms of choosing the price based on the residual demand curve to
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simplify the exposition. In particular, trader j’s allocation is constrained to be the residual

demand of the other N − 1 traders, Dj = −
∑

i ̸=j D
i(p). Therefore, how much they demand

is equivalent to the price they choose. Using this, the optimization problem becomes

Vk(z
j, wj, W̄ ) = max

p

{
E

[
p
∑
i ̸=j

Di(p) + (1− e−rh)(zj −
∑
i ̸=j

Di(p))(v + wj)

−(1− e−rh)γd
2r

(zj −
∑
i ̸=j

Di(p))2 + e−rh

[
ãt+1
0 + ãk+1

1 (zj −
∑
i ̸=j

Di(p)) + ãk+1
2 wj + ãk+1

3 W̄

ãk+1
4 (zj −

∑
i ̸=j

Di(p))2 + ãk+1
5 ((wj)2 + λσ2) + ãk+1

6 (W̄ 2 +
λσ2

N
)

+ãk+1
7 (zj −

∑
i ̸=j

Di(p))wj + ãk+1
8 (zj −

∑
i ̸=j

Di(p))W̄ + ãk+1
9 (wjW̄ +

λσ2

N
)

]]}
,

where again, tildes denote uncertainty about the continuation value. In the equilibrium in

which all other traders submit 0,
∑

i ̸=j D
i(p) = 0, so that the problem simplifies to

max
p

{
q

(
p
∑
i ̸=j

Di(p) + (1− e−rh)(zj −
∑
i ̸=j

Di(p))(v + wj)

−(1− e−rh)γd
2r

(zj −
∑
i ̸=j

Di(p))2 + e−rh

[
at+1
0 + ak+1

1 (zj −
∑
i ̸=j

Di(p)) + ak+1
2 wj + ak+1

3 W̄

ak+1
4 (zj −

∑
i ̸=j

Di(p))2 + ak+1
5 ((wj)2 + λσ2) + ak+1

6 (W̄ 2 +
λσ2

N
)

+ak+1
7 (zj −

∑
i ̸=j

Di(p))wj + ak+1
8 (zj −

∑
i ̸=j

Di(p))W̄ + ak+1
9 (wjW̄ +

λσ2

N
)

])}
,

where the continuation value coefficients correspond to the equilibrium with non-zero trade

today. This is then simply the optimization problem in the equilibrium with trade scaled by

q. Thus, trader j’s demand submission will simply be the same as that in the equilibrium

with non-zero trade, irrespective of q, as long as q > 0. Intuitively, since their allocation

is independent of the demand schedule played in the zero-trade equilibrium, the trader will

behave as if the tremble equilibrium is all that matters, as that is the only instance in which

their submitted demand schedule matters. One can repeat the arguments above with very

slight modifications to show that the equilibrium with trade, when it exists, does in fact
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satisfy the trembling hand refinement.

Properties of the equilibrium:

It will facilitate the exposition to define quantities ak7 for k = T + 1, T + 2, . . . , T + ∆,

where ak7 = 1 − e−rh + e−rha
(k+1)(mod T+∆+1)
7 , for k = T + 1, T + 2, . . . , T + ∆. Then aT7 =

1

(N−1)2(1−e−rh+e−rhaT+1
7 )

if there is trade at T and 1− e−rh + e−rhaT+1
7 otherwise.

The ordering of the properties here is different than the listing of the properties in Propo-

sition 1. We begin by describing these differences.

Properties (1) and (2) in this section provide some basic properties regarding the solution.

We refer to these properties as “oscillation” properties throughout. They prove property 4

in Proposition 1.

Properties (3), (4), (5) show properties (1) and (2) in Proposition 1, by showing that

there must be a contiguous sequence of periods with trade, followed by a sequence of periods

without trade, and followed by trade at T .

Properties (6) and (7) prove some simplifications of the solution which lead to the ex-

pressions in property 3 of Proposition 3.

(1): The first property is that if one ak7 is larger than the long-run solution (i.e., the solution

in which the market is always open), the “next” one, ak−1
7 , must be smaller. To see this,

define

f(x) =
1

(N − 1)2(1− e−rh + e−rhx)
.

The long-run solution solves the quadratic equation given by f(x0) = x0. Since for x > 0, f

is decreasing in x, if x > x0, y ≡ f(x) < f(x0) = x0. So the next iteration y is less than x0.

The opposite happens if x < x0. So solutions oscillate around the long-run solution when

the market is open.

(2): Second, we show that the size of the oscillations decreases as one gets further away

from the end of trade. To do this, note if ak7 = x, where k ̸= 0, 1,

ak−2
7 = f(f(x)).

Note the long run solution x0 solves the quadratic equation x0 = f(f(x0)). After simplifying,
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we can write this equation as

0 = 1− (1− e−rh)(N − 1)2x0 − e−rh(N − 1)2x2
0.

Note that the long-run solution x0 we care about is the positive root. It is straightforward

to show, as with our solution for a7 above, that one root is positive and one is negative,

and the quadratic function defined by the right-hand side above is decreasing in the positive

reals. In particular, if 0 < x < x0,

1− (1− e−rh)(N − 1)2x− e−rh(N − 1)2x2 > 0,

which by reversing the same operations that led us from f(f(x0)) = x0 to the quadratic

equation, implies f(f(x)) > x, so that ak−2
7 > ak7. Similarly, if x > x0, then ak−2

7 < ak7. So

the oscillations decrease in magnitude as one moves further from the end of trade.

We illustrated these first two properties for a7. The correspondence between a7 and c and

b implies analogous results for c.

(3): Let us spend some time characterizing when trade will occur. Note, by the above, for

trade to occur at k ∈ {0, . . . , T}, we need

ak+1
7 >

(
1− N − 2

e−rh(N − 1)

)
.

Denote the right-hand side of this inequality by al7. If al7 < 0, trade will occur in every

trading period, so we can assume al7 ≥ 0. Now, note if trade occurs at k + 1,

ak+1
7 =

1

(N − 1)2(1− e−rh + e−rhak+2
7 )

.

Then, re-writing the inequality above by substituting this expression for ak+1
7 , we must have

ak+2
7 >

1
N−1

− ((N − 1)(1− erh) + erh)(1− e−rh)

((N − 1)(1− erh) + erh)e−rh

for trade to occur at k if it occurred at k + 1. This inequality uses the assumption that

al7 ≥ 0. Then, call the right-hand side of this inequality ah7 .

Now, note if ak+1
7 ∈ [al7, a

h
7 ], trade will occur at all periods in the day, using the oscillation

properties shown above. To see this, note if trade occurred at k and ā7 < ak+1
7 ≤ ah7 , then

ā7 > ak7 > al7, so trade will occur at k− 1, and so ak−ℓ
7 > al7 for all earlier periods in the day.

Similarly, if trade occurs at k and ā7 > ak+1
7 > al7, then by the oscillation properties, and

ak+1−ℓ
7 > al7 for all earlier periods in the day.
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Moreover, if there is trade in two consecutive periods, there must be trade in all prior

periods. This is because if there is trade in two consecutive periods, it must be the case that

ak+1
7 ∈ [al7, a

h
7 ] if k is the first of the two periods. If ak+1

7 < al7, there can’t have been trade

at k, and if ak+1
7 > ah7 , by the oscillation property, ak+2

7 < ak7 < al7, and so there can’t have

been trade at k + 1.

(4): Now let us show that there cannot be a period without trade followed by a period

with trade followed by another period without trade. In other words, if there is trade in

a period which is followed by a period without trade, all prior periods must have non-zero

trade. Note if there isn’t trade in period k ≥ 2, we must have ak+1
7 <

(
1− N−2

e−rh(N−1)

)
and

so ak7 = 1− e−rh + e−rhak+1
7 < 1

N−1
. If there is trade in period k − 1, then

ak−1
7 =

1

(N − 1)2(1− e−rh + e−rhak7)
.

And, there will then be trade in k − 2 since

ak−1
7 =

1

(N − 1)2(1− e−rh + e−rhak7)
>

1

(N − 1)2(1− e−rh + e−rh 1
N−1

)
>

(
1− N − 2

e−rh(N − 1)

)
,

where the last inequality is straightforward to verify, as it is equivalent to

(N − 2)(erh − 1)2

(N − 1)erh −N + 2
> 0.

Hence, if there is no trade for a period and there is trade in the preceding period, there is

also trade in the preceding two periods, which, by the results in property (4), implies there

is trade in all preceding periods.

(5): Let us now show that there must be trade at period T . First, there must be trade in

at least one period. Otherwise, ak7 = 1− e−rh+ e−rha
(k+1)(mod T+∆+1)
7 for all k, which implies

ak7 is strictly monotonic in k, unless it always equals 1. Strict monotonicity cannot occur

since the solution must be periodic. The solution cannot always equal 1 because 1 > al7, a

contradiction to the assumption of no trade.

Assume there is no trade at T, T − 1, . . . , T − ℓ + 1, but there is trade at period T − ℓ.

Then, by the above arguments, there must be trade at 0, 1, . . . , T − ℓ−1 as well. As a result,

a07 > al7. Yet, then aT+∆
7 = (1− e−rh) + e−rha07 > aℓ7, a

T+∆−1
7 = (1− e−rh) + e−rhaT+∆

7 > aℓ7,

etc., until aT+1
7 > al7. But this implies there must be trade at T , a contradiction.
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(6): Next we show ck/fk = −γ/r. First, recall

ak7 = (1− e−rh)(1 + ck)−
(1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck).

Plugging in the expression for fk derived above, this implies

ak7 = (1− e−rh)(1 + ck)
2 + e−rhak+1

7 (1 + ck)
2.

Thus, defining κk =
2r
γd
ak4 + ak7, we have κk = e−rhκk+1(1+ ck)

2 for t < T, and similarly when

t = T. Note this recursion also holds in periods in which there is no trade. This periodic

recursion has unique solution κk = 0. Then, the expression for fk implies fk = − r
γ
ck.

(7): The last property is that ak/bk = −v. Recall the first FOC for optimal demand is

ak + ckZ̄

bk
− ckZ̄

bk(N − 1)
+ (1− e−rh)v +

(1− e−rh)γdckZ̄

r
+ e−rhak+1

1 − 2e−rhak+1
4 ckZ̄ = 0,

By the third FOC above, this can be rewritten as

0 =
ak
bk

+
ck
bk
Z̄ +

ckZ̄

fk
e−hrak+1

7 + (1− e−rh)(v +
ckZ̄

fk
) + e−rhak+1

1 .

Then, the recursions for a1, a7 imply

− r

γZ̄
ak1 + ak7 =

r

γZ̄

(
ak
bk

+
ckZ̄

bk

)
.

Combined, these last two expressions imply

− r

γZ̄
ak1 + ak7 = − r

γZ̄
(1− e−rh)

(
v − γ

r
Z̄
)
+ e−rh(ak+1

7 − r

γZ̄
ak+1
1 ).

It’s straightforward to show this relation also holds when there is no trade, implying − r
γZ̄

ak1+

ak7 = − r
γZ̄

(v− γ
r
Z̄). Plugging this back into the simplified FOC above, we arrive at ak

bk
= −v.

A.2. Corollary 1: Trade every period

Let us show (N − 1)(1− e−rh) > 1 is a sufficient condition for an equilibrium with trade

every period to exist. Assume we are considering whether there is trade in period k < T.

Period T is analogous. Since we must have

ck =
1

(N − 1)(1 + e−rh(ak+1
7 − 1))

− 1,

and the solution a7 of the fixed point problem is nonnegative, ck ≥ −1. And, ck < 0 if

(N − 1)(1− e−rh) > 1. Hence, −1 ≤ ck < 0 every period in which the market is open. Then
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by the expressions for a4 given above, the solution for a4 will be negative. So, f will be

positive, and b will be negative, given by the solutions to the first-order conditions above.

Therefore, there is an equilibrium with trade every period.

Explicit Solution for (ak7)
T
k=0:

In fact, in the case in which there is trade every period, we can express the solution for

(ak7)
T
k=0 in terms of the solution to a quadratic equation.

ak7 =
1

(N − 1)2(1 + e−rh(ak+1
7 − 1))

,

for k = 0, . . . , T − 1. Then, at time T ,

aT7 =
1

(N − 1)2(1 + e−r(1+∆)h(a07 − 1))
.

Set a07 = d for some constant d which solves a quadratic equation. Write δ = e−rh. The

constant term in the quadratic equation is

− 2
(
(−1 + δ)(N − 1)2 −

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1

+ 2
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1

+ δT+1+∆

[(
(−1 + δ)δ−(T+1) − (−1 + δ)δ−(T+1+∆)

)
(N − 1)2

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)

+
(
δ−(T+1) − δ−(T+1+∆)

)√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

+
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)]

.

The coefficient on the first-order term is

δT+1+∆

[(
− 2δ−T + (1− δ)δ−(T+1) + δ−(T+1+∆)(1 + δ)

)
(N − 1)2

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1
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−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)

−
(
δ−(T+1) − δ−(T+1+∆)

)√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

+
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)]

,

and the coefficient on the second-order term is

2δ1+∆(N − 1)2
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)
.

One can show that the discriminant of the quadratic equation for d is positive, implying that

one root is positive and the other is negative. The positive solution describes equilibrium.

An equilibrium with a single no-trade period:

Before proceeding to 24/7 trade, let us prove a result regarding no-trade periods of a

single period. In particular, we’ll prove the following:

LEMMA 1: Assume an equilibrium of the conjectured form, 4, with strictly downward sloping

demand schedules, bk < 0 for all k ∈ {0, . . . , T}, does not exist. Then, if (N−1)(1−e−2rh) >

1, there is an equilibrium in which demand schedules are uniformly zero for a single period

during the trading day. This equilibrium has no trade in period T − 1 and also satisfies

properties 3 and 4 of Proposition 1 in the other periods.

It is straightforward to show via numerical examples that the condition (N − 1)(1 −
e−2rh) > 1 is not meaningless, i.e., there are parameters for which 1−e−2rh > 1

N−1
> 1−e−rh

and only a no-trade period for exactly one period exists.

Note since ∆ ≥ 1, the condition (N − 1)(1 − e−2rh) > 1 alone implies there is a trade

equilibrium at T since the implied cT is negative. If there were also trade at T − 1, the

oscillation properties (1) and (2) shown above would imply there is trade in all previous

periods, a contradiction. Hence, there is no trade at T − 1.

Now let us show that aT−1
7 is large enough for a trade equilibrium to occur in period

T − 2. Or equivalently, we show that the value of ck necessary for trade to occur is negative.
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This will imply, by property (4) above, that there is trade in all prior periods.

Since there’s no trade in period T − 1,

aT−1
7 = (1− e−rh) + e−rhaT7 > 1− e−rh

For a trade equilibrium to exist in period T − 2, we need the necessary value of cT−2 to be

negative. It is sufficient that

1 < (N − 1)
(
1− e−rh + e−rh(1− e−rh)

)
= (N − 1)(1− e−2rh),

which holds.

Note there can’t be any other equilibrium which satisfies the trembling-hand refinement.

This results from our arguments above regarding uniqueness of the refined fixed point prob-

lem for a7. Intuitively, if there were a single other period without trade, it must be that

there is trade in periods T − 1, T , and hence there would be trade in all earlier periods by

the oscillation properties.

A.3. Proposition 3: 24/7 Trade

It is straightforward to see that when ∆ = 0, solutions to the recursions must be constant.

The recursions describing the value function reduce to

a0 = −Z̄2c2
(

1

b(N − 1)
+ e−rha4

)
+ e−rha0 + e−rha5λσ

2 + e−rha6
λσ2

N
+ e−rha9

λσ2

N

a1 =
c(c+ 1)Z̄

b(N − 1)
− a+ cZ̄

b

a2 = − cZ̄

N − 1
− (1− e−rh)cZ̄ + e−rha2 − e−rha7cZ̄

a3 =
cNZ̄

N − 1
+ e−rha3 − e−rha8cZ̄

a4 = −(1− e−rh)γd
2r

(1 + c)2 + e−rha4(1 + c)2

a5 = (1− e−rh)
f

2
+

f

2(N − 1)
+ e−rh f(1 + c)

2(N − 1)
+ e−rha5

a6 = − fN

2(N − 1)
− e−rhf

2

(
N − 2

N − 1
− c

N − 1

)
+ e−rha6

a7 =
1 + c

N − 1
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a8 = −c+
N − 2

N − 1
(1 + c)

a9 =
cf

(1 + c)(N − 1)
+ e−rha9

and the equations describing the trade equilibrium reduce to.

b =
r
(
N − 2− (N − 1)e−rh(1− a7)

)
(N − 1)(γd(e−rh − 1) + 2re−rha4)

,

c =
1

(N − 1)(1 + e−rh(a7 − 1))
− 1,

f =
r(1 + e−rh(a7 − 1))c

γd(e−rh − 1) + 2re−rha4
,

a = −c(N − 2)Z̄

N − 1
+ b

(
v(e−rh − 1)− e−rha1 +

cγd(e
−rh − 1)Z̄

r
+ 2e−rhcZ̄a4

)
.

Therefore,

c =
−(N − 1)(1− e−rh) +

√
(1− e−rh)2(N − 1)2 + 4e−rh

2e−rh
− 1.

Given c, we can solve for a7 and a4. This yields solutions for b, f, a, and the remaining

recursions.

B. Information Problem

This appendix characterizes the solution of the model when agents have heterogeneous

asset values. Recall Sj is each trader’s total signal (sum of past signals). sj is each trader’s

modified signal. Write their expectation of the dividend as

wj +B1S
j +B2

∑
i ̸=j

(
wi + ASi

)
,

for some constants B1, B2, A. Consistency of the learning problem requires B1 = A. See Du

and Zhu (2017b) for details. Recall the variance of private value shocks is σ2, of dividend

shocks is σ2
D, and of signal shocks is σ2

ϵ . Then, Du and Zhu (2017b) Lemma 1 gives the

conditional expectation of v given wj, Sj, and
∑

i ̸=j (w
i + ASi) is

wj +
1/(A2σ2

ϵ )

1/(A2σ2
D) + 1/(A2σ2

ϵ ) + (n− 1)/(A2σ2
ϵ + σ2)

Sj+
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1/(A2σ2
ϵ + σ2)

1/(A2σ2
D) + 1/(A2σ2

ϵ ) + (n− 1)/(A2σ2
ϵ + σ2)

1

A

∑
i ̸=j

(
wi + ASi

)
.

B1 is defined in terms of A by the above. A solves the equation A = B1, and B2 is then

given as a function of A.

Define

sj =
1

α
(wj +B1S

j),

where

α =
A2σ2

ϵ + σ2

NA2σ2
ϵ + σ2

.

Then, the conditional expectation of v is given by

αsj +
1− α

N − 1
s−j =

Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄.

Guess that the value function is linear-quadratic:

Vk(z
j, Z̄, sj, s̄) = ak0 + ak1z

j + ak2s
j + ak3 s̄+ ak4(z

j)2 + ak5(s
j)2 + ak6(s̄)

2 + ak7z
jsj + ak8z

j s̄+ ak9s
j s̄.

σ2 = 1
α2 (σ

2+A2(σ2
D+σ2

ϵ )) is variance of the shock to sj, and σ2
N = 1

α2 (σ
2/N+A2(σ2

D+σ2
ϵ/N))

is the variance of the shocks to s̄. The Bellman equation for every period, except the last, is

Vk(z
j, sj, s̄) = max

Dj

{
−Djp∗t + (1− e−rh)(zj +Dj)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
−(1− e−rh)γd

2r
(zj +Dj)2 + e−rh

[
at+1
0 + ak+1

1 (zj +Dj) + ak+1
2 sj + ak+1

3 s̄

ak+1
4 (zj +Dj)2 + ak+1

5 ((sj)2 + λσ2) + ak+1
6 (s̄2 + λσ2

N)

+ak+1
7 (zj +Dj)sj + ak+1

8 (zj +Dj)s̄+ ak+1
9 (sj s̄t + λσ2

N)
]}

,

and it is similar in the last period. The FOC for optimal demand in the first T periods is

then

0 = −p∗t − λkD
j + (1− e−rh)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

r
(zj +Dj) + e−rh[ak+1

1 + 2ak+1
4 (zj +Dj) + ak+1

7 sj + ak+1
8 s̄],

where λk :=
∂pt
∂Dj

k

. Assume

Dj
k = ak + bkpt + ckz

j + fks
j.
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The equilibrium price is

pt = −ak + ckZ̄ + fks̄t
bk

.

The FOC implies

ak + ckZ̄ + fks̄

bk
+

1

bk(N − 1)
(ck(z

j − Z̄) + fk(s
j − s̄))

+ (1− e−rh)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

r
((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))

+ e−rh
[
ak+1
1 + 2ak+1

4 ((1 + ck)z
j − ckZ̄ + fk(s

j − s̄)) + ak+1
7 sj + ak+1

8 s̄
]
= 0.

Then

b = −
ehr
(
−a8 + a7(−2 +N) + (−1 + ehr)(−2 + αN)

)
r

((−1 + a7 + a8 + ehr)(−1 +N) ((−1 + ehr)γ − 2a4r))

c =
a8 − a7(−2 +N)− (−1 + ehr)(−2 + αN)

a7(−1 +N) + (−1 + ehr)(−1 + αN)

f = −
(
−a8 + a7(−2 +N) + (−1 + ehr)(−2 + αN)

)
r

(−1 +N) (γ − ehrγ + 2a4r)

Returning to the Bellman equation, we have

Vk = (ck(z
j − Z̄) + fk(s

j − s̄))(
ak
bk

+
ck
bk
Z̄ +

fk
bk
s̄)

+ (1− e−rh)((1 + ck)z
j − ckZ̄ + fk(s

j − s̄))

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

2r
(((1 + ck)z

j − ckZ̄ + fk(s
j − s̄)))2

+ e−rh
[
at+1
0 + ak+1

1 ((1 + ck)z
j − ckZ̄ + fk(s

j − s̄)) + ak+1
2 sj + ak+1

3 s̄

ak+1
4 ((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))2 + ak+1

5 ((sj)2 + λσ2) + ak+1
6 (s̄2 + λσ2

N)

+ak+1
7 ((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))sj

+ak+1
8 ((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))s̄+ ak+1

9 (sj s̄+ λσ2
N)
]
,

which yields recursions as before.
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Internet Appendix of: Is 24/7 Trading Better?

Appendix IA.1 provides more details of the calibration and the data used. Appendix IA.2

studies welfare when parameters vary between night and day. Appendix IA.3 quantifies

welfare relative to perfectly efficient trade. Appendix IA.4 solves the continuous trade model,

computes the expected volume in that model, studies an exchange’s problem, and shows the

convergence of the discrete trade model to that solution. Last, Appendix IA.5 provides some

simplifications of the recursions provided in the Appendix.

IA.1 Calibration Details

We calibrate our model to some large equity exchanges to study counterfactual values,

such as welfare or volume, when the length of the trading day changes. To do this, we need

estimates of a few parameters per exchange. The optimal length of a closure, ∆∗, depends

on N and σd

σn
. Therefore, we need at least two linearly independent empirical moments from

each exchange to identify these parameters. Due to the availability of Trade and Quote

(TAQ) data, we choose to use the fraction of total daily volume in certain time intervals.

Specifically, we compute the total volume in 2023 between 9:30 a.m. and 4:00 p.m. per

exchange and the total volume in each 30-minute interval per exchange. From this, we can

compute the average fraction of daily volume from 9:30 to 12:30 and 1:00 to 4:00. We leave

out the interval 12:30 to 1:00 so that the moments are not linear combinations of each other.

We then compute the corresponding measure implied by our model. Mathematically, this is

E
[
V olume[x,x+ 3

24
)

]
E
[
V olume[0,1−∆)

] =

∫ x+ 3
24

x
E
[∑N

i=1 |Di
t|
]
dt∫ 1−∆

0
E
[∑N

i=1 |Dt
t|
]
dt

,

where x = 0 is the start of trading, 9:30 a.m. Note that the exchanges we focus on all

trade for 6.5 hours a day, so ∆ = 17.5
24

. Section IA.4.1 details the calculation of expected

instantaneous volume. Note the above formula abuses notation, since trades at the end-

of-day session are discrete quantities, not flows. These discrete trades can be thought of

as Dirac delta functions in the integral above. Table A.1 lists the empirical moments, the

model implied moments, and the calibrated parameters per exchange, which are fit by the

method of moments. Our model fits the data well.
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Table A.1
Empirical and Calibrated Moments

This table compares the fraction of daily volume per exchange from 9:30-12:30 and 1:00-4:00

to that from the calibrated model, as well as the calibrated parameters. N̂ denotes the

estimated size of the market, and σ̂d

σn
is the relative instantaneous volatilities during the day

and night. We assume r = 10%, v = 0, and zi0 = 0 for all calibrations.

Exchange
Current
Length of
Night (∆)

Empirical
Volume

9:30-12:30

Empirical
Volume
1:00-4:00

Calibrated
Volume

9:30-12:30

Calibrated
Volume
1:00-4:00

N̂ σ̂d

σn

NYSE 72.9% 49.9% 46.0% 49.9% 44.8% 208 1.28
Nasdaq 72.9% 50.2% 45.1% 50.2% 44.5% 325 1.32
NYSE Arca 72.9% 54.5% 40.6% 54.5% 40.4% 303 1.23
CBOE EDGX 72.9% 54.8% 40.0% 54.8% 40.0% 191 0.87

IA.2 Welfare when Night Characteristics Differ From the Day

Throughout, we have assumed that marginal holding costs and the private value shock

process have been the same whether the market is open or closed. However, this is unlikely

to be true. In this Appendix, we look at the welfare gain (or loss) of a short market closure

of one hour versus 24/7 trading when holding costs or shock magnitudes differ between night

and day. We choose to focus on the case of a one-hour closure as this is a common closure

length proposed for extending hours by the NYSE, Nasdaq, CBOE, and 24X.

Figure B.1 plots an example. The blue dotted line varies the volatility of shocks to

private values at night while holding the total volatility in a day fixed. Mathematically,

σd =
√

σ2
T−∆σ2

n

1−∆
. This choice ensures potential gains from trade, which are larger when there

are more shocks to private values, are not a function of the length of the closure. When

volatility at night is less than the total volatility, there is an increase in welfare due to the

hour-long closure, and welfare decreases when the night is more volatile. The solid red line

plots the change in welfare as a function of the change in the marginal holding cost from day

to night. As it becomes cheaper to hold inventory overnight when γd > γn, there are large

welfare gains. When γd < γn, the hour-long closure rapidly hurts welfare relative to having

the market open 24/7.

IA.3 The Cost of Imperfect Competition for Differing Closure Lengths

2



Figure B.1. Welfare Change Under Heterogeneity From Day to Night
Above is the percent change between welfare under a market closure of one hour and welfare
under 24/7 trade as we vary the marginal holding cost or volatility of the shocks between
night to day. The dotted blue line plots the welfare change as a function of marginal holding
cost during the day compared to that of the night. The solid red line plots the welfare change
as a function of total volatility, σ2

T = (1−∆)σ2
d +∆σ2

n, relative to volatility at night, where
σd solves that equation. Both plots use ∆ = 1/24, r = 10%, λ = 10, N = 10, and σ and γ
equal 1 unless specified to be different.

Throughout, we have focused on comparing welfare under a market structure with 24/7

trade and with a daily closure, ignoring the cost of each relative to the first-best allocation.

The first-best allocation would be achieved if there were perfect competition and if the

trade occurred continuously throughout the day. In this setting, no trader ever holds any

undesired inventory. Making comparisons relative to the first-best allocation allows us to

better quantify the costs and benefits of market closure.

Figure C.1 plots the percentage of welfare loss of different market designs relative to the

first-best (efficient) allocations. Panel A is for a small market, and Panel B is for a large

market. The solid red line is the welfare loss of a market design with 24/7 trade relative to

efficient welfare. The dashed blue line is the welfare loss of a market design that is closed for

3



Figure C.1. Welfare Loss Relative to Efficient Benchmark
We plot the percent welfare loss under different market designs relative to the first best
(efficient) welfare. Panel A plots this loss for a small market, and Panel B plots this loss for
a large market. The solid red line is the welfare loss of a market design that is open 24/7
relative to the efficient welfare. The dashed blue line is the welfare loss of a market design
that is closed for ∆ periods a day relative to the efficient welfare. The dashed-and-dotted
green line is the welfare loss of a market design that is closed for 17.5 hours a day, such as
many equity exchanges, relative to efficient welfare. Both plots use r = 10%, and λ = 10.

∆ periods a day relative to efficient welfare. The dashed-and-dotted green line is the welfare

loss of a market design that is closed for 17.5 hours a day, such as many equity exchanges,

relative to efficient welfare.

As before, the 24/7 market is better for traders than a market with a closure. However,

in Panel A, the welfare loss due to closure is very small, less than 0.40%, relative to the

overall welfare loss of imperfect competition, ≈ 25%. Take, for example, when ∆ ≈ 50%.

The welfare cost is only an extra 0.30% worse than 24/7 trading, despite only allowing trade

for 50% of the day. The endogenous response by traders and coordination of liquidity at

the end of the day offset the majority of the extra costs incurred due to the inability to

trade at night. The current equity market structure, which involves trading for 6.5 hours

a day, is associated with approximately 0.33% extra loss in welfare relative to the efficient

benchmark.

In Panel B, when the market is larger, closure becomes relatively more costly. Now,

4



trading for 6.5 hours a day has 3.5 times the welfare loss relative to the efficient benchmark.

In this larger market, the costs relative to the efficient benchmark are significantly lower,

as the friction from imperfect competition is less important. Therefore, long closures are

fairly costly in these larger and more liquid markets, whose liquidity wouldn’t endogenously

deteriorate too much if trading hours were extended. It is worth noting that these results

assume constant volatility and holding costs across the day and night.

IA.4 Continuous Trade Model

The continuous time model assumes there is trade from time 0 to 1−∆− ϵ, a no-trade

period from 1 − ∆ − ϵ to 1 − ∆, a discrete trade session at 1 − ∆ and then an overnight

period from 1−∆ to 1. If Di
t is the demand allocated at time t, we have dzi = Di

tdt during

the continuous trade sessions. We will allow various parameters to have separate d and n

subscripts to show they can differ between [0, 1−∆) and [1−∆, 1].

We begin by solving the model for continuous trading sessions between 0 and 1−∆−ϵ.We

conjecture that the other N−1 traders submit demand schedules given by Equation 4. Trade

is modeled by a uniform price double auction where the price is the solution to Equation 1.

Therefore, the equilibrium price is

p∗t = −a(t) + c(t)Z̄ + f(t)W̄t

b(t)
.

Note that a, b, and c are functions of t which are not explicitly defined between 1 −∆ − ϵ

and 1−∆. Given the equilibrium price, the demand schedule evaluated at the equilibrium

price is

Di
t = c(t)

(
zit − Z̄

)
+ f(t)(wi

t − W̄t).

Finally, conjecture that the day value function takes the following linear-quadratic form

Jd(t, zi, wi, W̄ ) = α0(t)+α1(t)z
i+α2(t)w

i+α3(t)W̄ +α4(t)(z
i)2+α5(t)(w

i)2+α6(t)(W̄ )2

+ α7(t)z
iwi + α8(t)z

iW̄ + α9(t)w
iW̄ .

Recall that traders rationally anticipate how their demand affects their trade price. There-

fore, when trader i chooses demand di, they face the residual demand curve that, by market

clearing, implies they face the price Φ(t, di, zi,W−i), defined in equation 5. Therefore, the

Hamilton-Jacobi-Bellman equation is

5



rJd = max
di

{
Jd
t + rzi(v + wi)− Φ(t, di, zi,W−i)di − γd

2
(zi)

2
+ Jd

zid
i

+ λdEt

[
Jd(t, zi, wi + ξi, W̄ + ξ̄)− Jd(t, zi, wi, W̄ )

]}
,

where ξi
iid∼ N(0, σ2

d). First, we will solve for the equations that define the α functions, and

then we will add in the optimality of demand constraints. Plugging the conjectured day

value function into the HJB equation, as well as the equilibrium price and demand schedule,

we get

r(α0(t) + α1(t)z
i + α2(t)w

i + α3(t)W̄ + α4(t)(z
i)2 + α5(t)(w

i)2

+ α6(t)W̄
2 + α7(t)z

iwi + α8(t)z
iW̄ + α9(t)w

iW̄ )

= α′
0(t) + α′

1(t)z
i + α′

2(t)w
i + α′

3(t)W̄ + α′
4(t)(z

i)2 + α′
5(t)(w

i)2

+ α′
6(t)W̄

2 + α′
7(t)z

iwi + α′
8(t)z

iW̄ + α′
9(t)w

iW̄ + zir(v + wi)

− 1

b(t)(N − 1)
(c(t)(zi − Z̄)+ f(t)(wi − W̄ ))2 − γd

2
(zi)2 +λd(α5(t)σ

2
d +α6(t)

σ2
d

N
+α9(t)

σ2
d

n
).

By matching coefficients, we get that

rα0(t) = α′
0(t)−

c(t)2Z̄2

b(t)(N − 1)
+ λd(α5(t)σ

2
d + α6(t)

σ2
d

N
+ α9(t)

σ2
d

N
)

rα1(t) = α′
1(t) + rv +

2

b(t)(N − 1)
c(t)Z̄

rα2(t) = α′
2(t) +

2

b(t)(N − 1)
f(t)Z̄

rα3(t) = α′
3(t)−

2

b(t)(N − 1)
f(t)Z̄

rα4(t) = α′
4(t)−

γd
2

− c(t)2

b(t)(N − 1)

rα5(t) = α′
5(t)−

f(t)2

b(t)(N − 1)

rα6(t) = α′
6(t)−

f(t)2

b(t)(N − 1)

rα7(t) = α′
7(t) + r − 2f(t)c(t)

b(t)(N − 1)

rα8(t) = α′
8(t) +

2f(t)c(t)

b(t)(N − 1)

6



rα9(t) = α′
9(t) +

2f(t)2

b(t)(N − 1)
.

To get the optimality of demand equations, we take the first-order condition of the right side

of the HJB equation with respect to di. This yields the equation

−Φ− Φdid
i + Jd

zi = 0.

Plugging in the equilibrium expressions for Φ and di, we are left with the equations

a(t) + c(t)Z̄ + f(t)W̄

b(t)
+

1

b(t)(N − 1)
(c(t)(zi − Z̄) + f(t)(wi − W̄ ))

+ α1(t) + 2α4(t)z
i + α7(t)w

i + α8(t)W̄ = 0.

Matching coefficients in the above equation gives us four equations that must be satisfied

for demand to be optimal:

a(t) + c(t)Z̄

b(t)
− 1

b(t)(N − 1)
c(t)Z̄ + α1(t) = 0,

c(t)

b(t)(N − 1)
+ 2α4(t) = 0,

f(t)

b(t)(N − 1)
+ α7(t) = 0,

f(t)

b(t)
− f(t)

b(t)(N − 1)
+ α8(t) = 0.

From optimality of demand, α8(t) = − (N−2)f(t)
(N−1)b(t)

= (N − 2)α7(t). Summing the equations for

α7(t), and α8(t) we have

α7(t) = A7e
rt +

1

N − 1
.

Plugging this back into the equation for α7(t),

rA7e
λt +

λ

N − 1
= rA7e

rt + r + 2cα7(t),

so c(t) = −r(N−2)
2(A7(N−1)ert+1)

.

Assume A4 through A9 are 0, so α4 through α9 are constant too. We will argue later that

this conjecture is satisfied in equilibrium. Then c = − r(N−2)
2

, and α7 =
1

N−1
. The equation

for α4 becomes

rα4 = −γd
2

− α4r(N − 2),
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so α4 = − 2γd
r(N−1)

. This implies

b(t) = − c(t)

2α4(N − 1)
= −r2(N − 2)

2γd
, and f(t) = −α7(N − 1)b(t) =

r2(N − 2)

2γd
.

So, b(t), c(t), and f(t) are all constant between time 0 and 1−∆− ϵ. Solving the differential

equations for the α’s, we get

α0(t) =
γd(N − 2)Z̄2

2r(N − 1)
− ert

∫ t

0

e−rsλd

(
α5(s)σ

2
d + α6(s)

σ2
d

N
+ α9(s)

σ2
d

N

)
ds+ A0e

rt

α1(t) = A1e
rt + v +

4γdZ̄

r2(N − 1)

α2(t) = A2e
rt − 2Z̄

r(N − 1)

α3(t) = A3e
rt +

2Z̄

r(N − 1)

α4 = − γd
2r(N − 1)

α5 =
r(N − 2)

2γd(N − 1)

α6 =
r(N − 2)

2γd(N − 1)

α7 =
1

N − 1

α8 =
N − 2

N − 1

α9 = − r(N − 2)

γd(N − 1)

Plugging in α5, α6, and α9 into α0 and simplifying gives

α0(t) =
γd(N − 2)Z̄2

2r(N − 1)
− λdσ

2
d

(N − 2)

2γdN

(
ert − 1

)
+ A0e

rt.

After the continuous trade sessions, there is a no-trade period of length ϵ where no trade

occurs, and then there is a closing auction at time 1−∆. Therefore, the value function right

before the no-trade period is

Jd(t = 1−∆− ϵ, zi, wi, W̄ ) =(1− e−rϵ)

(
zi(v + wi)− γd

2r

(
zi
)2)

+ e−rϵE1−∆−ϵ

[
Jd(t = 1−∆−, zi, wi

t−∆, W̄t−∆)
]
.
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Now, we move on to the discrete auction at the close, t = 1 − ∆. Recall that traders

rationally anticipate how their demand affects their trade price. Therefore, when trader i

chooses demand di, they face the residual demand curve that, by market clearing, implies

they face the price Φ(t, di, zi,W−i), defined in equation 5. Therefore, the value function at

1−∆− satisfies

Jd(t = 1−∆−, zi, wi, W̄ ) = max
di

{Jn(t = 1−∆+, zi + di, wi, W̄ )− Φ(1−∆, di, zi,W−i)di},

where Jn describes the value function overnight. We conjecture

Jn(t, zi, wi, W̄ ) = β0(t) + β1(t)z
i + β2(t)w

i + β3(t)W̄ + β4(t)(z
i)2 + β5(t)(w

i)2 + β6(t)(W̄ )2

+ β7(t)z
iwi + β8(t)z

iW̄ + β9(t)w
iW̄ .

To get the optimality of demand equations, we take the first-order condition of the right side

of the equation for Jd(t = 1−∆−, zi, wi, W̄ ) with respect to di. This yields

−Φ− Φdid
i + Jn

di = 0.

Plugging in the equilibrium expressions for Φ and di, we are left with

a(1−∆) + c(1−∆)Z̄ + f(1−∆)W̄

b(1−∆)
+

1

b(1−∆)(N − 1)
di+

β1(1−∆) + 2β4(1−∆)(zi + di) + β7(1−∆)wi + β8(1−∆)W̄ = 0.

First, plug in the equilibrium demand for di, which gives

a(1−∆) + c(1−∆)Z̄ + f(1−∆)W̄

b(1−∆)
+

1

b(1−∆)(N − 1)
(c(1−∆)(zi−Z̄)+f(1−∆)(wi−W̄ ))

+ β1(1−∆) + 2β4(1−∆)((1 + c(1−∆))zi − Z̄c(1−∆) + f(1−∆)(wi − W̄ ))

+ β7(1−∆)wi + β8(1−∆)W̄ = 0.

Matching coefficients in the above equation gives us four equations that must be satisfied

for demand at the closing auction to be optimal,

a(1−∆) + c(1−∆)Z̄

b(1−∆)
− 1

b(1−∆)(N − 1)
c(1−∆)Z̄ + β1(1−∆)− 2β4(1−∆)c(1−∆)Z̄ = 0,

c(1−∆)

b(1−∆)(N − 1)
+ 2β4(1−∆)(1 + c(1−∆)) = 0,

f(1−∆)

b(1−∆)(N − 1)
+ 2β4(1−∆)f(1−∆) + β7(1−∆) = 0,
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f(1−∆)

b(1−∆)
− f(1−∆)

b(1−∆)(N − 1)
− 2β4(1−∆)f(1−∆) + β8(1−∆) = 0.

Now, we move on to the solution of the value function at night. The HJB equation is

r
(
β0(t) + β1(t)z

i + β2(t)w
j + β3(t)W̄ + β4(t)(z

i
t)

2 + β5(t)(z
j)2

+ β6(t)W̄
2 + β7(t)z

jwj + β8(t)z
jW̄ + β9(t)w

jW̄
)

= β′
0(t) + β′

1(t)z
i + β′

2(t)w
j + β′

3(t)W̄ + β′
4(t)(z

i)2 + β′
5(t)(w

i)2

+ β′
6(t)W̄

2 + β′
7(t)z

jwj + β′
8(t)z

jW̄ + β′
9(t)w

jW̄

+ rzit(v + wj)− γn
2
(zit)

2 + λn(β5(t)σ
2
n + β6(t)

σ2
n

N
+ β9(t)

σ2
n

N
).

By matching coefficients, we get

rβ0(t) = β′
0(t) + λn(β5(t)σ

2
n + β6(t)

σ2
n

N
+ β9(t)

σ2
n

N
)

rβ1(t) = β′
1(t) + rv

rβ2(t) = β′
2(t)

rβ3(t) = β′
3(t)

rβ4(t) = β′
4(t)−

γn
2

rβ5(t) = β′
5(t)

rβ6(t) = β′
6(t)

rβ7(t) = β′
7(t) + r

rβ8(t) = β′
8(t)

rβ9(t) = β′
9(t)

Solving the above ODEs yields the following equations

β0(t) = −ert
∫ t

1−∆

λne
−rs

(
β5(s)σ

2
n + β6(s)

σ2
n

N
+ β9(s)

σ2
n

N

)
ds+B0e

rt

β1(t) = B1e
rt + v

β2(t) = B2e
rt

β3(t) = B3e
rt

β4(t) = −γn
2r

+B4e
rt

β5(t) = B5e
rt
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β6(t) = B6e
rt

β7(t) = 1 +B7e
rt

β8(t) = B8e
rt

β9(t) = B9e
rt

Note that β0(t) can be simplified to

β0(t) = ert
(
B0 − λnσ

2
n

(
B5 +

B6 +B9

N

)(
t− (1−∆)

))
.

All that is left now is to solve the constants in the solutions for the α’s and β’s using

boundary value matching conditions and periodicity. The two boundary conditions are

Jd(t = 1−∆−, zi, wi, W̄ ) = Jn(t = 1−∆, zi+c(1−∆)(zi− Z̄)+f(1−∆)(wi−W̄ ), wi, W̄ )

− Φ(1−∆, c(1−∆)(zi − Z̄) + f(1−∆)(wi − W̄ ), ziW−i)di.

and lim
t→1−

Jn(t, zi, wi, W̄ ) = lim
t→1−

Et

[
Jd(t = 0, zi, wi, W̄ )

]
.

The first boundary condition is more involved. After the closing auction, the night value

function is actually

Jn(1−∆, zi + c(1−∆)
(
zi − Z

)
+ f(1−∆)(wi − W̄ ), wi, W̄ )

= β0(1−∆) + β1(1−∆)

(
zit + c(1−∆)

(
zit − Zt

)
+ f(1−∆)(wi − W̄ )

)
+

β2(1−∆)wi + β3(1−∆)W̄

+ β4(1−∆)

(
zi + c(1−∆)

(
zi −Z

)
+ f(1−∆)(wi − W̄ )

)2

+ β5(1−∆)(wi)2 + β6(1−∆)W̄ 2

+

(
zit+c(1−∆)

(
zit−Zt

)
+f(1−∆)(wi−W̄ )

)(
β7(1−∆)wi+β8(1−∆)W̄

)
+β9(1−∆)wiW̄ .

Combining like terms gives and subtracting off the costs of the trade gives the value at

1−∆−:

Jn(1−∆, zi + c(1−∆)
(
zi − Z

)
+ f(1−∆)(wi − W̄ ), wi, W̄ )− Φ(1−∆, di, zi,W−i)di

= β0(1−∆)−β1(1−∆)c(1−∆)Z̄+β4(1−∆)c(1−∆)2Z̄2−c(1−∆)Z̄
a(1−∆) + c(1−∆)Z̄

b(1−∆)

+

(
β1(1−∆)(1+c(1−∆))−2β4(1−∆)Z̄(1+c(1−∆))+c(1−∆)

a(1−∆) + c(1−∆)Z̄

b(1−∆)

)
zi
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+

(
β1(1−∆)f(1−∆)+ β2(1−∆)− 2β4(1−∆)f(1−∆)c(1−∆)Z̄ − β7(1−∆)Z̄c(1−∆)

+ f(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)

)
wi

+

(
−β1(1−∆)f(1−∆)+β3(1−∆)+2β4(1−∆)f(1−∆)c(1−∆)Z̄−β8(1−∆)Z̄c(1−∆)

− f(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)
− f(1−∆)c(1−∆)

b(1−∆)
Z̄

)
W̄

+ β4(1−∆)(1 + c(1−∆))2(zj)2

+

(
β4(1−∆)f(1−∆)2 + β5(1−∆) + f(1−∆)β7(1−∆)

)
(wj)2

+

(
β4(1−∆)f(1−∆)2 − β8(1−∆)f(1−∆) + β6(1−∆)− f(1−∆)2

b(1−∆)

)
W̄ 2

+

(
2β4(1−∆)(1 + c(1−∆))f(1−∆) + (1 + c(1−∆))β7(1−∆)

)
zjwj

+

(
−2β4(1−∆)(1+ c(1−∆))f(1−∆)+(1+ c(1−∆))β8(1−∆)+

f(1−∆)c(1−∆)

b(1−∆)

)
zjW̄

+

(
−2β4(1−∆)f(1−∆)2−f(1−∆)β7(1−∆)+f(1−∆)β8(1−∆)+β9(1−∆)+

f(1−∆)2

b(1−∆)

)
wjW̄

Finally, accounting for the no-trade period, we have

erϵJd(t = 1−∆− ϵ, zi, wi, W̄ )− (erϵ − 1)

(
zi(v + wi)− γd

2r

(
zi
)2)

= Jn(t = 1−∆−, zi, wi, W̄ ) + erϵλdσ
2
dϵ
r(N − 2)

2γdN
.

This equation gives the following boundary conditions at t = 1−∆:

erϵα0(1−∆− ϵ)− erϵλdσ
2
dϵ
r(N − 2)

2γdN
= β0(1−∆)

− β1(1−∆)c(1−∆)Z̄ + β4(1−∆)c(1−∆)2Z̄2 − c(1−∆)Z̄
a(1−∆) + c(1−∆)Z̄

b(1−∆)
,

erϵα1(1−∆− ϵ)− (erϵ − 1)v

= β1(1−∆)(1 + c(1−∆))− 2β4(1−∆)Z̄(1 + c(1−∆)) + c(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)
,

erϵα2(1−∆− ϵ)

= β1(1−∆)f(1−∆) + β2(1−∆)− 2β4(1−∆)f(1−∆)c(1−∆)Z̄ − β7(1−∆)Z̄c(1−∆)

12



+ f(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)
,

erϵα3(1−∆− ϵ)

= −β1(1−∆)f(1−∆) + β3(1−∆) + 2β4(1−∆)f(1−∆)c(1−∆)Z̄ − β8(1−∆)Z̄c(1−∆)

− f(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)
− f(1−∆)c(1−∆)

b(1−∆)
Z̄,

erϵα4(1−∆− ϵ) + (erϵ − 1)
γd
2r

= β4(1−∆)(1 + c(1−∆))2,

erϵα5(1−∆− ϵ) = β4(1−∆)f(1−∆)2 + β5(1−∆) + f(1−∆)β7(1−∆),

erϵα6(1−∆− ϵ) = β4(1−∆)f(1−∆)2 − β8(1−∆)f(1−∆) + β6(1−∆)− f(1−∆)2

b(1−∆)
,

erϵα7(1−∆− ϵ)− (erϵ − 1) = 2β4(1−∆)(1 + c(1−∆))f(1−∆) + (1 + c(1−∆))β7(1−∆),

erϵα8(1−∆− ϵ)

= −2β4(1−∆)(1 + c(1−∆))f(1−∆) + (1 + c(1−∆))β8(1−∆) +
f(1−∆)c(1−∆)

b(1−∆)
,

erϵα9(1−∆− ϵ) = −2β4(1−∆)f(1−∆)2

− f(1−∆)β7(1−∆) + f(1−∆)β8(1−∆) + β9(1−∆) +
f(1−∆)2

b(1−∆)
.

The boundary conditions at t = 1 are simply

αi(0) = βi(1),

for i = 0, 1 . . . , 9.

To summarize, we have specified 20 boundary conditions at times 1−∆ and 1, along with

4 demand optimality conditions at time 1−∆. There are four unknowns associated with the

αi’s, 10 unknowns associated with the βi’s, 4 unknowns determining the demand functions

at 1−∆, and the length of the no-trade period ϵ. Thus, these unknowns are overdetermined.

Let us specify how we solve the equations.

First, using the boundary conditions at time 1−∆, for αi for i = 4, . . . , 9, one can solve

for B4, . . . , B9 in terms of ϵ. Imposing, for instance, β4(1) = α4 yields a solution for ϵ. Then,

one can verify that βi(1) = αi for i = 5, . . . , 9. And, one can solve the four demand optimality

conditions for a, b, c, f at time 1−∆.

Now, there are 8 remaining unknowns, Ai, Bi, for i = 0, 1, 2, 3, which determine αi, βi, for

i = 0, 1, 2, 3. These unknowns solve four boundary conditions at 1 −∆ and four boundary

13



conditions at time 1. This completes the solution of the model.

We conclude by providing several expressions for some of the quantities in the model.

c(1−∆) = − (N − 2)(1− e−∆r)

e−∆r + (1− e−∆r)(N − 1)
,

ϵ = max

{
0,min

{
1−∆,

1

r
log

[
(N − 1)

(
γd − γn(1 + c(1−∆))2

)
− e−r∆(1 + c(1−∆))2(γd − γn(N − 1))

γd(N − 2)

]}}
.

Assume that Z̄ = 0 and v = 0, then A0 is simply

A0 =
(N − 2)

(
erλdσ

2
d + er(∆+ϵ)λdσ

2
d(ϵr − 1) + ∆rλnσ

2
n

)
2γd(er − 1)N

. (17)

The value function during the no-trade period itself is

Jd(t, zi, wi, W̄ ) = (1− e−r(1−∆−t))

(
r(v + wi)zi − γd

2r

(
zi
)2)

+ e−r(1−∆−t)Jn(t = 1−∆−, zi, wi, W̄ ) + e−r(1−∆−t)λdσ
2
d(1−∆− t)erϵ

r(N − 2)

2γdN
.

The average welfare during trade is

W (∆) :=
1

1−∆

∫ 1−∆

0

E
[
Jd(t, 0, wi, W̄ )

]
dt.

IA.4.1 Volume

Assume λd = λ̄dℓ, and σ2
d = 1

ℓ
σ̄2
d for some ℓ, λ̄d, σ̄d. Then, letting ℓ → ∞, wj and W̄ j

converge in law to Brownian motions during the day. We’ll restrict attention to this limiting

case both during the day and night, as it makes the computation of expressions involving

volume much more tractable. Additionally, we’ll assume γn = γd, which is sufficient to

ensure volume reaches a steady state distribution. Denote the volatility of the Brownian

shocks during the day and night by σd, σn, respectively.

We will omit time subscripts when denoting demand coefficients in the portion of the day

preceding the no-trade period, since those coefficients are constant, and denote coefficients

at the closing session by a 1−∆ subscript. Then, during the trading day,

Di
t = Di

0e
ct + fσd

∫ t

0

ec(t−s)(dwi
s − dW̄s).

14



In addition, under the assumption that γd = γn, we have f1−∆/c1−∆ = f/c. Using this, one

can show

Di
1−∆ =

c1−∆

c
Di

1−∆−ϵ + f1−∆

√
ϵσd

√
N − 1

N
δ2

for some N(0, 1) variable δ2. Moreover,

Di
1 = (1 + c1−∆)D

i
1−∆−ϵ + (cf1−∆ + f)

√
ϵσd

√
N − 1

N
δ2 + f

√
∆σn

√
N − 1

N
δ3,

for an independent N(0, 1) shock δ3. Combining these expressions,

Di
1 = (1 + c1−∆)D

i
0e

c(1−∆−ϵ) + (1 + c1−∆)fσd

√
N − 1

N

√
e2c(1−∆−ϵ) − 1

2c
δ1

+ (cf1−∆ + f)
√
ϵσd

√
N − 1

N
δ2 + f

√
∆σn

√
N − 1

N
δ3,

for a third independent N(0, 1) shock δ1.

Therefore, (Di
n)

∞
n=0 is an AR(1) process with normally distributed shocks. Moreover,

values of Di
t throughout the day have an unconditional normal distribution with mean 0 and

variance

e2ct
((1 + c1−∆)

2f 2σ2
d
e2c(1−∆−ϵ)−1

2c
+ (cf1−∆ + f)2ϵσ2

d + f 2∆σ2
n)

N−1
N

1− (1 + c1−∆)2e2c(1−∆−ϵ)
+ f 2σ2

d

N − 1

N

e2ct − 1

2c
.

Thus, since volume at any point of the day is simply
∑

i |Di
t|, its expectation is the mean of

(the sum of) a folded normal distribution.

IA.4.2 The Exchange’s Problem

In this subsection, we formally model an approximation of an exchange’s problem. As-

sume that an exchange’s goal is to maximize the expected volume. They do this by choosing

the length of closure, ∆. We abuse notation below, but note that Di
t = 0 during any period

of no trade or during the closure. The exchange’s problem is

∆E ∈ argmax
∆∈[0,1)

1

1−∆

∫ 1−∆

0

E

[∫ ∞

t

e−r(s−t)

(
N∑
i=1

∣∣Di
s

∣∣) ds

]
dt. (18)

The inner internal is the realized volume over the life of the asset. The outer integral

averages over the start time in the first day, as time is a state variable. Note the integral

above abuses notation, since trades at the end-of-day session are discrete quantities, not

flows. These discrete trades can be thought of as Dirac delta functions in the integral above.
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We can rewrite the problem as

∆E ∈ argmax
∆∈[0,1)

1

1−∆

∫ 1−∆

0

∫ ∞

t

e−r(s−t)

(
N∑
i=1

E
∣∣Di

s

∣∣) ds dt.

As traders are ex-ante identical, E [|Di
t|] is unconditionally symmetric across traders. Also,

from IA.4.1, we know that Di
t is unconditionally normal with mean 0 and a time-dependent

variance, denoted σ2
t . Therefore, |Di

t| is a folded normal distribution with mean
√

2
π
σt. The

problem reduces to

∆E ∈ argmax
∆∈[0,1)

N

√
2

π

1

1−∆

∫ 1−∆

0

∫ ∞

t

e−r(s−t)σsds dt.

Finally, let’s take care of the discrete trades at the close of each day. Breaking the inner

integral into pieces, it becomes∫ 1−∆

t

e−r(s−t)σsds+ e−r(1−∆−t)σ1−∆ +
∞∑
k=1

[∫ k+1−∆−ϵ

k

e−r(s−t)σsds+ e−r(k+1−∆)σk+1−∆

]
where for k ≥ 0 and for t ∈ [k, k + 1−∆− ϵ], σt is√
e2c(t−k)

((1 + c1−∆)2f 2σ2
d
e2c(1−∆−ϵ)−1

2c
+ (cf1−∆ + f)2ϵσ2

d + f 2∆σ2
n)

N−1
N

1− (1 + c1−∆)2e2c(1−∆−ϵ)
+ f 2σ2

d

N − 1

N

e2c(t−k) − 1

2c
,

for t ∈ (k + 1−∆− ϵ, k + 1−∆), σt = 0, and for t = k + 1−∆, σt is√(c1−∆

c

)2
σ2
k+1−∆−ϵ +

f 2
1−∆ϵ(N − 1)

N
σ2
d.

Note that γ just scales volume and only the ratio of volatility between day and night matters,

not the levels. Therefore, the optimal length of closure from an exchange’s perspective, ∆E,

is only a function of N , r, and σd

σn
.

This extension allows us to compare trader-optimal, ∆∗, and exchange-optimal, ∆E,

closures numerically. Figure D.1 plots these two quantities as a function of the number of

traders on the exchange, N . In general, there does not seem to be an interior optimum

for an exchange. When the market is small, they maximize volume by having one discrete

trading session at the start of the day. When the market is sufficiently large, volume is then

maximized by having trade 24/7. In practice, most exchanges require some downtime for

basic daily maintenance, which they prefer not to have during trading in case of technical

issues.14 In general, the decision of the optimal length of closure is positively related between

14For example, the CME Globex Trading System closes from 5:00 to 6:00 p.m. EST for daily maintenance.
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Figure D.1. Optimal Length of Closure
We plot the ex-ante welfare maximizing length of closure, ∆∗, that maximizes Equation 16
and the optimal length of closure, ∆E, is that which maximizes expected volume defined by
Equation 18. We assume that σ and γ are constant across day and night and use r = 10%.

traders and an exchange.

Finally, we use the calibrated quantities from Table I to see what the exchanges would

prefer to do within the confines of our model. The results are in Table D.1. Given that all

four exchanges are calibrated to be large, it is not surprising that all four calibrations imply

that 24/7 trading is optimal from an exchange’s perspective. In fact, the implied increase

in volume from extending trading hours to 23/7 or 24/7 is very large, ranging from 74.9%

up to 90.5%. It is, therefore, not surprising that three of these four exchanges already have

plans to extend their trading hours. However, a naive estimate for the increase in volume

from extending hours would be on the order of 254% as that is the increase in the amount

of trading hours a day from 6.5 to 23. We only calibrate a third of that effect due to the

endogeneity in the trading strategies. As hours are extended, per-period liquidity drops,

especially at the close, making instantaneous volume a much smaller amount.

IA.4.3 Convergence

In this section, we show numerically that the discrete trade model converges to the
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Table D.1
Calibration: Exchange’s Perspective

This table compares the volume of the current market closure to that of 23/7 trading, or the
optimal length of closure from an exchange’s perspective by using the calibrated volatility and

number of traders per exchange. N̂ denotes the estimated size of the market, and σ̂d

σn
is the

relative instantaneous volatilities during the day and night. We assume that total volatility
is constant across closure lengths so that σd solves σ

2
T = (1−∆)σ2

d+∆σ2
n. The optimal length

of closure, ∆E, is that which maximizes expected volume defined by Equation 18 given the
calibrated parameters and subject to the total volatility constraint. We assume r = 10%,
v = 0, and zi0 = 0 for all calibrations.

Exchange
Current
Length of
Night (∆)

N̂ σ̂d

σn

Optimal
Length of
Night (∆E)

% Volume
Change from
∆ to 23/7

% Volume
Change from

∆ to ∆E

NYSE 72.9% 208 1.28 0.0% 74.9% 75.5%
Nasdaq 72.9% 325 1.32 0.0% 89.1% 90.1%
Arca 72.9% 303 1.23 0.0% 89.6% 90.5%
CBOE EDGX 72.9% 191 0.87 0.0% 83.6% 84.1%

continuous trade model. In particular, for a given set of parameter values, Figure D.2

plots the maximum difference between the discrete and continuous trade welfares, end-of-

day aggressiveness captured by c in the final session, and no-trade period lengths. This

maximum is over ∆ ∈ {0, 1, . . . , K−1}, where for the continuous trade model, ∆ is replaced

by ∆/K. As we see, the errors follow roughly a linear path in the log-log plots, suggesting

convergence is algebraic.

IA.4.4 Proof of Proposition 4: Existence of Non-Zero Optimum

In this section, we prove Proposition 3. Specifically, we show that a very short closure

always increases welfare relative to 24/7 trading, and therefore, the optimal length of closure

is never zero. First, we take the derivative of welfare, Equation 16, with respect to the

closure length,

∂

∂∆
W (∆) =

∂

∂∆

[
1

1−∆

∫ 1−∆

0

Nα0(t) + σ2

(
Nα5(t) + α6(t) + α9(t)

)
dt

]
,

where the α’s are defined in Appendix IA.4. For algebraic simplicity, we won’t write out

ϵ(∆), but note that ϵ(∆ = 0) = 0. We will also be focusing on cases with very small ∆, and
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Figure D.2. Convergence of Discrete Trade Solution
This figure plots maximum absolute errors in various characteristics of the discrete and
continuous trade models as a function of the number of trading periods in a day. The
maximum is over the length of the trading day, and errors are given as a function of K, the
number of periods in the trading day. K is set to 4i, for i = 1, . . . , 6. We set r = 10%, λ =
1, σ = 1, γ = 1, N = 100.

so ϵ will always be less than 1−∆. After some simplifications, the derivative of welfare can

be written as
∂

∂∆
W (∆) =

e−r∆(N − 2)σ2

2(1−∆)2(er − 1)γr

(
er(1+∆+ϵ(∆))(λ+ r)− er+∆r(2λ+ r)

− er(∆+ϵ(∆))(2λ+ r) + er(2∆+ϵ(∆))λ(1 + r −∆r) + e∆r(λ+ r − λr)

+ erλ (1 + ∆r (1− (1−∆)r)) + e∆rr

[
(1−∆)(er − 1)(erϵ(∆) − 1)(λ+ r) ϵ′(∆)

+ ϵ(∆)

(
r − err + λ

(
1− er + erϵ(∆) + er(∆+ϵ(∆))(−1 + (−1 + ∆)r)

)
+ (−1 + ∆)erϵ(∆)(−1 + e∆r)λr ϵ′(∆)

)])
.

First, note that

∂

∂∆
W (∆)

∣∣∣∣
∆=0

= 0.
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Then, taking another derivative to get the second-order condition and evaluating at ∆ = 0,

we get that

∂2

∂∆2
W (∆)

∣∣∣∣
∆=0

=
(N − 2)r2σ2

2γ
> 0.

Therefore, welfare is strictly convex at ∆ = 0. So, W (∆′) > W (0) for some ∆′ sufficiently

small, and, therefore, the optimal length of closure is non-zero.

IA.5 Simplifications of Discrete Trade Solutions

IA.5.1 Simplifications of Model without Information:

Let’s simplify some of the recursions describing the value function by using the FOCs:

ak0 = Z̄ck

(
− ak + ckZ̄

bk
− (1− e−rh)v − (1− e−rh)γd

2r
ckZ̄ − e−rhak+1

1 + e−rhak+1
4 ckZ̄

)

+ e−rhat+1
0 + e−rhak+1

5 σ2 + e−rhak+1
6

σ2

N
+ e−rhak+1

9

σ2

N

= −Z̄2c2k

(
1

bk(N − 1)
+ e−rhak+1

4

)
+ e−rhat+1

0 + e−rhak+1
5 σ2 + e−rhak+1

6

σ2

N
+ e−rhak+1

9

σ2

N

and

ak1 =
ckak + c2kZ̄

bk
+ (1− e−rh)(1 + ck)v

+
(1− e−rh)γd

r
(1 + ck)ckZ̄ + e−rh(1 + ck)a

k+1
1 − 2e−rh(1 + ck)ckZ̄a

k+1
4

= ck

(
ckZ̄

bk(N − 1)
− (1− e−rh)v − (1− e−rh)γdckZ̄

r
− e−rhak+1

1 + 2e−rhak+1
4 ckZ̄

)
+ (1− e−rh)(1 + ck)v +

(1− e−rh)γd
r

(1 + ck)ckZ̄ + e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄a

k+1
4

=
c2kZ̄

bk(N − 1)
+ (1− e−rh)v +

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − 2e−rhckZ̄a

k+1
4

=
ck(ck + 1)Z̄

bk(N − 1)
− ak + ckZ̄

bk

and

ak2 =
fkak
bk

+
fkck
bk

Z̄ + (1− e−rh)(fkv − ckZ̄) +
(1− e−rh)γd

r
ckfkZ̄ + e−rhfka

k+1
1 + e−rhak+1

2
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− e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

= fk

(
ak
bk

+
ck
bk
Z̄ + (1− e−rh)v +

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − e−rh2ak+1

4 ckZ̄

)
− (1− e−rh)ckZ̄ + e−rhak+1

2 − e−rhak+1
7 ckZ̄

= fk
ckZ̄

bk(N − 1)
− (1− e−rh)ckZ̄ + e−rhak+1

2 − e−rhak+1
7 ckZ̄

ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)fkv −
(1− e−rh)γd

r
ckfkZ̄ − e−rhfka

k+1
1 + e−rhak+1

3

+ e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

8 ckZ̄

= −fk

(
ak
bk

+
ckZ̄

bk
+ (1− e−rh)v +

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − e−rh2ak+1

4 ckZ̄

)
− fkck

bk
Z̄ + e−rhak+1

3 − e−rhak+1
8 ckZ̄

= − ckfkZ̄

bk(N − 1)
− fkck

bk
Z̄ + e−rhak+1

3 − e−rhak+1
8 ckZ̄

and adding these last two, and using the solution to f/b by adding the last two optimality

of demand, ak2 + ak3 = e−rh(ak+1
2 + ak+1

3 ), which implies a2 = −a3.

at5 = (1− e−rh)fk −
(1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

5 + e−rhak+1
7 fk

= (1− e−rh)
fk
2

− f 2
k

2bk(N − 1)
+ e−rhak+1

7

fk
2

+ e−rhak+1
5

ak6 = −f 2
k

bk
− (1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

6 − e−rhak+1
8 fk

= − f 2
kN

2bk(N − 1)
− e−rhak+1

8

fk
2

+ e−rhak+1
6

These two imply ak5 − ak6 = −fk
2
+ e−rh(ak+1

5 − ak+1
6 ).

ak7 = (1− e−rh)(1 + ck)−
(1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck)

= − fk
bk(N − 1)

(1 + ck)

and

ak8 =
fk(1 + ck)

bk(N − 1)
− fk

bk
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Adding the equations for a7, a8,

ak7 + ak8 = −fk
bk

= (1− e−rh) + e−rh(ak+1
7 + ak+1

8 ).

This implies a7 + a8 = 1. Last,

ak9 =
f 2
k

bk
−(1−e−rh)fk+

(1− e−rh)γd
r

f 2
k −2e−rhak+1

4 f 2
k −e−rhak+1

7 fk+e−rhak+1
8 fk+e−rhak+1

9

=
f 2
k

bk
+

f 2
k

bk(N − 1)
+ e−rhak+1

8 fk + e−rhak+1
9

=
2f 2

k

bk(N − 1)
− (1− e−rh)γdf

2
k

r
+ 2e−rhak+1

4 f 2
k + e−rhak+1

9

=
f 2
k (2 + ck)

bk(1 + ck)(N − 1)
+ e−rhak+1

9

Therefore, we have

ak0 = −Z̄2c2k

(
1

bk(N − 1)
+ e−rhak+1

4

)
+ e−rhat+1

0 + e−rhak+1
5 σ2 + e−rhak+1

6

σ2

N
+ e−rhak+1

9

σ2

N

ak1 =
ck(ck + 1)Z̄

bk(N − 1)
− ak + ckZ̄

bk

ak2 = fk
ckZ̄

bk(N − 1)
− (1− e−rh)ckZ̄ + e−rhak+1

2 − e−rhak+1
7 ckZ̄

ak3 = − ckfkNZ̄

bk(N − 1)
+ e−rhak+1

3 − e−rhak+1
8 ckZ̄

ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)
fk
2

− f 2
k

2bk(N − 1)
+ e−rhak+1

7

fk
2

+ e−rhak+1
5

ak6 = − f 2
kN

2bk(N − 1)
− e−rhak+1

8

fk
2

+ e−rhak+1
6

ak7 = − fk
bk(N − 1)

(1 + ck)

ak8 =
ckfk
bk

− fk(N − 2)

bk(N − 1)
(1 + ck)

ak9 =
f 2
k (2 + ck)

bk(1 + ck)(N − 1)
+ e−rhak+1

9

for t < T. There is an analogous recursion at time T .
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IA.5.2 Simplifications of Model with Information:

The recursions corresponding to the Bellman equation are given by

ak0 = −Z̄
ckak + c2kZ̄

bk
− (1− e−rh)γd

2r
c2kZ̄

2

+ e−rhat+1
0 − e−rhak+1

1 ckZ̄ + e−rhak+1
4 c2kZ̄

2 + e−rhak+1
5 λσ2 + e−rhak+1

6 λσ2
N + e−rhak+1

9 λσ2
N

ak1 =
ckak + c2kZ̄

bk
+

(1− e−rh)γd
r

(1 + ck)ckZ̄ + e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄a

k+1
4

ak2 =
fkak
bk

+
fkck
bk

Z̄ − (1− e−rh)ckZ̄
Nα− 1

N − 1
+

(1− e−rh)γd
r

ckfkZ̄ + e−rhfka
k+1
1 + e−rhak+1

2

− e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)ckZ̄
N(1− α)

N − 1
− (1− e−rh)γd

r
ckfkZ̄ − e−rhfka

k+1
1

+ e−rhak+1
3 + e−rh2ak+1

4 ckfkZ̄ − e−rhak+1
8 ckZ̄

ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)fk
Nα− 1

N − 1
− (1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

5 + e−rhak+1
7 fk

ak6 = −f 2
k

bk
− (1− e−rh)fk

N(1− α)

N − 1
− (1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

6 − e−rhak+1
8 fk

ak7 = (1− e−rh)(1 + ck)
Nα− 1

N − 1
− (1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk

+ e−rhak+1
7 (1 + ck)

ak8 =
ckfk
bk

+ (1− e−rh)(1 + ck)
N(1− α)

N − 1
+

(1− e−rh)γd
r

(1 + ck)fk

− 2e−rhak+1
4 (1 + ck)fk + e−rhak+1

8 (1 + ck)

ak9 =
f 2
k

bk
− (1− e−rh)fk

Nα− 1

N − 1
+ (1− e−rh)fk

N(1− α)

N − 1
+

(1− e−rh)γd
r

f 2
k − 2e−rhak+1

4 f 2
k

− e−rhak+1
7 fk + e−rhak+1

8 fk + e−rhak+1
9 .

Let’s again simplify some of these recursions by using the FOCs:

ak0 = Z̄ck

(
− ak + ckZ̄

bk
− (1− e−rh)γd

2r
ckZ̄ − e−rhak+1

1 + e−rhak+1
4 ckZ̄

)
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+ e−rhat+1
0 + e−rhak+1

5 σ2 + e−rhak+1
6 σ2

N + e−rhak+1
9 σ2

N

= −Z̄2c2k

(
1

bk(N − 1)
+ e−rhak+1

4

)
+ e−rhat+1

0 + e−rhak+1
5 σ2 + e−rhak+1

6 σ2
N + e−rhak+1

9 σ2
N

and

ak1 =
ckak + c2kZ̄

bk

+
(1− e−rh)γd

r
(1 + ck)ckZ̄ + e−rh(1 + ck)a

k+1
1 − 2e−rh(1 + ck)ckZ̄a

k+1
4

= ck

(
ckZ̄

bk(N − 1)
− (1− e−rh)γdckZ̄

r
− e−rhak+1

1 + 2e−rhak+1
4 ckZ̄

)
+

(1− e−rh)γd
r

(1 + ck)ckZ̄ + e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄a

k+1
4

=
c2kZ̄

bk(N − 1)
+

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − 2e−rhckZ̄a

k+1
4

=
ck(ck + 1)Z̄

bk(N − 1)
− ak + ckZ̄

bk

and

ak2 =
fkak
bk

+
fkck
bk

Z̄ − (1− e−rh)ckZ̄
Nα− 1

N − 1

+
(1− e−rh)γd

r
ckfkZ̄ + e−rhfka

k+1
1 + e−rhak+1

2 − e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

= fk

(
ak
bk

+
ck
bk
Z̄ +

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − e−rh2ak+1

4 ckZ̄

)
− (1− e−rh)ckZ̄

Nα− 1

N − 1
+ e−rhak+1

2 − e−rhak+1
7 ckZ̄

= fk
ckZ̄

bk(N − 1)
− (1− e−rh)ckZ̄

Nα− 1

N − 1
+ e−rhak+1

2 − e−rhak+1
7 ckZ̄

ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)ckZ̄
N(1− α)

N − 1
− (1− e−rh)γd

r
ckfkZ̄

− e−rhfka
k+1
1 + e−rhak+1

3 + e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

8 ckZ̄

= −fk

(
ak
bk

+
ckZ̄

bk
+

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − e−rh2ak+1

4 ckZ̄

)
− fkck

bk
Z̄ − (1− e−rh)ckZ̄

1− α

N − 1
+ e−rhak+1

3 − e−rhak+1
8 ckZ̄
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= − ckfkZ̄

bk(N − 1)
− fkck

bk
Z̄ − (1− e−rh)ckZ̄

N(1− α)

N − 1
+ e−rhak+1

3 − e−rhak+1
8 ckZ̄

Then,

ak7 = (1−e−rh)(1+ck)
Nα− 1

N − 1
−(1− e−rh)γd

r
(1+ck)fk+2e−rhak+1

4 (1+ck)fk+e−rhak+1
7 (1+ck)

= − fk
bk(N − 1)

(1 + ck)

and

ak8 =
ckfk
bk

+

(
fk

bk(N − 1)
− f

b

)
(1 + ck)

Adding the equations for a7, a8,

ak7 + ak8 = −fk
bk

= (1− e−rh) + e−rh(ak+1
7 + ak+1

8 ).

Then,

ak9 =
f 2
k

bk
− (1− e−rh)fk

Nα− 1

N − 1
+ (1− e−rh)fk

N(1− α)

N − 1
+

(1− e−rh)γd
r

f 2
k

− 2e−rhak+1
4 f 2

k − e−rhak+1
7 fk + e−rhak+1

8 fk + e−rhak+1
9

=
f 2
k

bk
+

f 2
k

bk(N − 1)
+ (1− e−rh)fk

N(1− α)

N − 1
+ e−rhak+1

8 fk + e−rhak+1
9

= −(1− e−rh)γdf
2
k

r
+

2f 2
k

bk(N − 1)
+ 2e−rhak+1

4 f 2
k + e−rhak+1

9

=
2f 2

k

bk(N − 1)
− ckf

2
k

bk(1 + ck)(N − 1)
+ e−rhak+1

9

=
(2 + ck)f

2
k

bk(1 + ck)(N − 1)
+ e−rhak+1

9

Therefore, we have

ak0 = −Z̄2c2k

(
1

bk(N − 1)
+ e−rhak+1

4

)
+ e−rhat+1

0 + e−rhak+1
5 σ2 + e−rhak+1

6 σ2
N + e−rhak+1

9 σ2
N

ak1 =
ck(ck + 1)Z̄

bk(N − 1)
− ak + ckZ̄

bk

ak2 = fk
ckZ̄

bk(N − 1)
− (1− e−rh)ckZ̄

Nα− 1

N − 1
+ e−rhak+1

2 − e−rhak+1
7 ckZ̄

ak3 = − ckfkNZ̄

bk(N − 1)
− (1− e−rh)ckZ̄

N(1− α)

N − 1
+ e−rhak+1

3 − e−rhak+1
8 ckZ̄
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ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)fk
Nα− 1

N − 1
− (1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

5 + e−rhak+1
7 fk

ak6 = −f 2
k

bk
− (1− e−rh)fk

N(1− α)

N − 1
− (1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

6 − e−rhak+1
8 fk

ak7 = − fk
bk(N − 1)

(1 + ck)

ak8 =
ckfk
bk

− fk(N − 2)

bk(N − 1)
(1 + ck)

ak9 =
(2 + ck)f

2
k

bk(1 + ck)(N − 1)
+ e−rhak+1

9
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