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If observations with similar covariate values in a regression have correlated model errors,

then the corresponding standard error is typically biased downward, resulting in excess rejec-

tion under the null (i.e., Type I errors). This issue is endemic in empirical corporate finance

research, where firms with similar characteristics likely have common exposure to economic

forces and therefore cross-correlated outcomes. A lack of cross-sectional independence poten-

tially compromises inference based on any analysis of data with a cross-sectional component,

even if only within variation is used for identification (as in a firm fixed effects regression).

Researchers in corporate finance typically address concerns about cross correlations, if at all,

by clustering standard errors at the level of a cross-sectional grouping such as industry or

location. However, both the severity of the excess rejection problem and whether clustering

is sufficient to account for cross correlations more generally is unclear.

This paper studies the cross-correlation problem and potential solutions in the context

of cross-sectional event studies of stock returns around a market-moving event such as an

unanticipated regulatory shock. Our main takeaway is that using standard errors from the

event-window cross-sectional regression itself to conduct statistical testing, as is standard,

produces substantial excess rejection under the null, even when clustering by industry and/or

location. In contrast, using the distribution of coefficients from a time-series of cross-sectional

regressions outside of the event window to conduct statistical testing produces approximately

the correct rejection rate under the null, though we show that care must be taken with the

choice of test. We introduce a novel GLS-based variant of this approach and show that

it offers substantial improvements in power over a more conventional OLS-based approach.

More broadly, our analysis suggests that cross-correlated errors may be a greater problem

and cross-sectional clustering less effective at addressing it than is commonly understood.

Researchers use cross-sectional event studies of the type we analyze to test predictions

about the differential value implications of a given event for different types of firms. This

empirical strategy has been a part of the corporate finance toolkit for decades and, noting
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that a return represents a change in a firm’s valuation, represents one of the earliest forms

of difference-in-differences estimation in finance. To gain insight into how researchers es-

tablish statistical significance in these tests in practice, we conduct an informal survey of

papers in top-3 finance journals implementing these tests and find that 87% report standard

errors produced by the event-window cross-sectional regression itself. Of these, 35% re-

port unadjusted standard errors; 25% report robust standard errors, which address concerns

about heteroskedasticity but not cross correlations; 35% report standard errors clustered by

industry; and 5% report standard errors clustered by geographic location.

How serious is the cross correlation problem in these tests? To answer this question,

we reproduce the data sets used in several recent cross-sectional event studies published in

top-3 finance journals. For each, we estimate a series of cross-sectional regressions of returns

over short windows (1 day or 5 days) on the associated covariates of interest in the period

1991-2021, excluding the event window itself. We then compute the fraction of regressions in

which the coefficient of interest is statistically significant at different significance levels. Since

the event in question does not occur in these non-event windows, this fraction provides an

estimate of the rejection rate under the null that the event does not differentially affect firm

valuations. We also conduct the same exercise using several covariates commonly analyzed in

finance but not, to our knowledge, analyzed in a specific cross-sectional event study, noting

that there is no event window to exclude in this case.

For typical covariates, tests in non-event windows reject at the 1% significance level more

than 20% of the time. The problem is especially acute for covariates closely related to firm

fundamentals (e.g., firm size), where rejection rates at the 1% level in non-event windows can

exceed 50%. While clustering by industry reduces excess rejection rates, tests still typically

reject at the 1% level more than 10% of the time in non-event windows, with rejection rates

exceeding 30% for covariates closely related to firm fundamentals. The problem caused by

rejection rates this high outside of a specific event being studied is that they undermine how
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much we can learn from a test of the differential effect of the event itself. Conditional on

rejecting the null of no relationship between returns in an event window and a covariate,

considerable weight must be given to the possibility that the test would reject even absent

the event, especially if the power of the test is relatively low.

An alternative strategy to significance testing that sidesteps this problem is to compare an

event-window coefficient to the distribution of coefficient obtained from estimating the same

cross-sectional regression in a series of non-event windows. This distribution approximates

the sampling distribution of the coefficient under the null hypothesis. Statistical significance

is then established by testing whether the event-window coefficient is “large” relative to the

distribution of non-event window coefficients. We refer to this approach in general as “time-

series OLS,” since the approach typically involves estimating OLS regressions (e.g., Sefcik

and Thompson, 1986). We show that the time-series OLS approach effectively eliminates

excess Type I errors, subject to one important condition. Because the distribution of non-

event window coefficients typically exhibits fat tails, parametric statistical tests such as a

z-test still reject too often under the null – about 3% of the time at the 1% level. In

contrast, using the empirical cumulative distribution function (CDF) of non-event window

coefficients to compute a p-value for the event-window coefficient gets the Type I error rate

approximately right.

A more serious issue with the time-series OLS approach is that it may have low power

because it does not exploit information about cross correlations (Chandra and Balachandran,

1992). The lack of power is important, as most events that researchers study are likely to

cause differences in returns across firms with different characteristics that are modest in

size relative to the noise in returns, making these differences difficult to detect with low-

powered tests. We confirm this lack of power for several covariates by introducing a known

relationship between returns and a covariate and showing that time-series OLS often fails to

detect this relationship. To address power concerns, we propose a new approach, which we
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term “time-series GLS,” that substitutes GLS for OLS regressions in both event windows

and non-event windows. Implementing GLS requires an estimate of the covariance matrix of

errors. Our approach uses principal component analysis (PCA) to encode the most important

cross correlation patterns into the covariance matrix. The logic behind this approach is that

we have no way of knowing ex ante the dimensions on which returns covary, so we extract

as much information about cross correlations as we can from the data.1

We compare the efficiency of this time-series GLS approach to that of the time-series

OLS approach by again introducing a known relationship between returns and a covariate

and computing the frequency with which each approach detects the relationship. The boost

in efficiency is large: Time-series GLS detects the induced relationship nearly twice as often

as time-series OLS in most cases. The boost in efficiency is especially large when the event

window is longer than one day, which is important since most papers implementing cross-

sectional event studies of returns use windows longer than one day to allow for uncertainty

about the timing with which information about the event is impounded into stock prices.

While the time-series GLS approach we describe is more complex than traditional tests in

corporate finance, we provide a turn-key Stata module that implements the approach (as

well as the time-series OLS approach) in seconds in most cases.2

Finally, to gain more insight into the nature of return cross-correlations and why cross-

sectional clustering is not more effective, we further evaluate the PCs of returns. Our analysis

shows that cross correlation patterns are complex and not well-explained by membership

in common cross-sectional groups such as industry or location, which explains why cross-

sectional clustering strategies are not more effective. Specifically, we show that many PCs

are required to summarize the cross-sectional variance in returns and that the economic

factors captured by the first few PCs vary considerably over time, are often period-specific,
1Note that we are not trying to explain the cross-section of returns.
2This module is available at https://github.com/MalcolmWardlaw/csestudy).
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and are difficult to map to traditional economic factors known to explain returns.

Our paper contributes to a growing literature on practical issues in computing stan-

dard errors when regression errors are not I.I.D. Several papers show that clustering can

substantially alter standard errors (Moulton, 1986, 1987; Bertrand et al., 2004). Petersen

(2009) shows that, in finance, the Fama-MacBeth procedure may be preferable to clustering

in panel data when cross-sectional clustering is more important than time-series clustering.

The time-series approaches we describe in this paper are close in spirit to the Fama-MacBeth

approach. Abadie et al. (2023) consider more flexible approaches to modeling error struc-

ture and show that both robust and clustered standard errors can be severely inflated. In

contrast, our evidence suggests that standard errors can be severely deflated due to cross

correlated model errors, even when clustering standard errors cross-sectionally.

Our paper also contributes to the literature in finance on event study analysis of returns.

The literature has explored the challenges that return cross-correlations create for inference

in studies of abnormal mean event returns (Collins and Dent, 1984; Bernard, 1987; Lyon

et al., 1999; Brav et al., 2000; Mitchell and Stafford, 2000; Jegadeesh and Karceski, 2009;

Kolari and Pynnönen, 2010). However, we are aware of only two prior, older papers exploring

the challenges they pose for inference in cross-sectional analysis of returns around an event.3

Sefcik and Thompson (1986) describe these challenges and propose a time-series OLS ap-

proach as a solution. Chandra and Balachandran (1992) use simulated data to show that

time-series approach using weighted least squares or assuming constant correlations within

and across industries produce more efficient estimates than the time-series OLS approach.

The recommendations of both papers have largely been ignored, perhaps in part because of

the overhead associated with implementing the recommended approaches but also in part

because of the near-universal adoption of clustering in empirical corporate finance to address

concerns about cross-correlations.
3See Kothari and Warner (2007) for a survey of the literature on the econometrics of event study analysis.
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In addition to reminding readers of the inference problem associated with using standard

errors from cross-sectional return regressions around an event to conduct statistical testing,

our paper makes several unique contributions. First, we provide the first full quantification of

the severity of the cross-correlation problem in corporate finance and show that the problem

can indeed be severe. Second, we demonstrate that cross-sectional clustering of standard

errors may be largely ineffective at addressing the problem. Third, we quantify the power

deficiencies of the time series OLS approach. Fourth, and most importantly, we propose a

novel solution and show that our solution delivers substantial efficiency gains. Finally, we

show that return cross-correlations are complex, time-varying, and difficult to summarize

using observable factors. While we cannot extrapolate from our analysis to other settings,

the fact that returns should reflect innovations to beliefs about a firm’s fundamentals suggests

that the problems we highlight may be severe in any setting where the outcome variable is

related to firm fundamentals, which encompasses most empirical corporate finance.

1 Approaches

This section presents various approaches to estimating the cross-sectional effect of an

event on stock returns. We begin by presenting a general framework describing cross-sectional

event study analysis and some practical considerations.

1.1 Preliminaries

Consider an event E that induces a treatment effect in the market values of a set of firms.

One object that may be of interest is the average treatment effect among the set of firms. The

average return of firms in the event window represents an estimate of this average treatment

effect. Another object that may be of interest – and the one that is the focus of this paper

– is the heterogeneous treatment effect associated with the event across firms. A researcher
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may posit that the event in question affects the valuation of different firms differently. For

example, a regulation may affect firms with different regulatory records differently, an election

outcome may affect firms with different political connections differently, or a macroeconomic

shock may affect firms with different financial structures differently.

Formally, let X denote an N × J matrix of firm characteristics with elements xij, where

i ∈ N indexes firms and j ∈ J indexes characteristics. These characteristics include both

variables of interest and any control variables. Let τ(xi) represent the treatment effect

associated with the event for firm i, where xi is the 1 × J vector of firm i’s characteristics,

with the first element equal to one. Typically, the researcher assumes that the treatment

effect is linear in xi – that is, that τ(xi) = xiβ, where β = {β1, β2, ..., βJ} is a J × 1 vector

of coefficients. The objective of cross-sectional event study analysis is typically to estimate

and conduct hypothesis testing on the elements of β.

One important consideration in cross-sectional event study analysis is the choice of an

“event window.” This window represents the period of time over which market participants

becomes aware of the event. In some cases, the market becomes aware of the event at a

discrete, well-defined point in time. In these cases, the event window is typically a single

day. In other cases, the exact time at which the market becomes aware of the event is less

clear, and an event window longer than one day may be appropriate. Event windows of one

to five days are common. Researchers sometimes also study longer event windows, with the

idea that either the event itself unfolds slowly over time or the market needs time to fully

digest the repercussions of the event. For example, studies of the cross section of returns

in the early stages of the COVID-19 pandemic often focus on periods of approximately one

month starting sometime in March 2020.
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1.2 Cross-sectional OLS regressions

The standard approach to estimating the cross-sectional valuation effects of an event is to

regress returns during the event window on firm characteristics using OLS. Let ri denote the

buy-and-hold return of firm i’s stock during the event window. The standard cross-sectional

event study regression equation is

ri = α + xiβ + ϵi. (1)

One important challenge in conducting hypothesis testing on the βj coefficients is that

errors in returns are likely to be both heteroskedastic and cross-sectionally correlated. These

features generally make default standard errors from OLS estimation of (1) incorrect. Cross-

sectional correlation in particular is likely to make standard errors too small, since firms

that are similar on observable characteristics are likely exposed to similar economic forces

in general and therefore to experience positive comovement in stock prices. Put differently,

any correlation between returns and firm characteristics in the event window may simply

reflect more general co-movement in the returns of firms with similar characteristics that

would have occurred even absent the event.

To address these concerns, most cross-sectional event studies report either White (1980)

adjusted standard errors, which account for heteroskedasticity, or industry-clustered stan-

dard errors, which account for both heteroskedasticity and cross-sectional correlation in

errors within industry. However, White-adjusted standard errors do not account for cross-

correlations at all, and it is unclear whether clustering at the industry level adequately

accounts for cross correlations. More generally, clustering at any group level requires spec-

ifying a group structure a priori. Given the complexity of return correlations, it is unclear

whether any pre-specified group-level clustering is adequate.
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1.3 Time-series OLS

An alternative approach to hypothesis testing in cross-sectional event study analysis is to

estimate (1) for both the event window and a set of pre-event windows using OLS and then

use the distribution of pre-event window coefficients to test the statistical significance of a

corresponding event-window coefficient.4 We refer to this general approach as times-series

OLS (TS-OLS for short).5 This approach implicitly treats the non-event window coefficients

as draws from a placebo data-generating process that is comparable to the event-window

data-generating process but without any differential treatment effect associated with the

event. A standard error based on the time-series of non-event coefficients maps neatly into

the textbook definition of a standard error as “a measure of the statistical accuracy of an

estimate, equal to the standard deviation of the theoretical distribution of a large population

of such estimates.”6 Under the assumption that return cross correlations are time-invariant,

this approach fully accounts for any cross-correlations by using a benchmark for hypothesis

testing that also reflects the effects of cross correlations. Note that, for a binary characteristic,

this approach is effectively a difference-in-differences approach.

Formally, let Z denote a set of pre-event windows, each of the same length as the event

window E. Let rit denote firm i’s return in window t for each t ∈ {E, Z}. In addition, let

xit denote the 1 × J vector of characteristics of firm i measured at the start of window t.

Consider the following cross-sectional regression for a given window t:

rit = αt + xitβt + ϵit (2)

Estimation of this regression for each t ∈ {E, Z} yields a time series of estimated coefficient
4In principle, one could use a post-event window period instead. However, a pre-event window seems

more natural if pre-event return data is available.
5Sefcik and Thompson (1986) show that this approach is tantamount to forming portfolios with weights

determined by the distribution of the explanatory characteristics and then comparing portfolio returns in
and out of the event window. This approach is therefore sometimes referred to as “Portfolio OLS.”

6Source: https://doc.sitespect.com/knowledge/sitespect-statistics
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vectors β̂t, where β̂jt denotes the estimated coefficient j for day t. The time series of

estimated coefficients β̂jt for t ∈ Z form a basis for testing the statistical significance of the

estimated event-window coefficient β̂jE.

There are two possible null hypotheses that one might naturally test with respect to

βjE. One is that βjE = 0. This is the hypothesis that cross-sectional regressions of the

type described in Section 1.2 test. The other is that βjE is equal to the mean of the non-

event window coefficient. This hypothesis allows for the possibility that returns may be

systematically correlated with firm characteristics. Given the evidence of such correlations

from the asset-pricing literature, we focus on this second null hypothesis.

There are multiple sub-approaches to testing the significance of event-window coefficients

using the non-event window time-series. The first is to estimate the second-stage regression

β̂jt = δj + γjet + νjt (3)

separately for each characteristic xj, where et is an indicator variable equal to 1 if t = E and

0 if t ∈ Z. The coefficient γ̂t represents an estimate of the difference between the first-stage

event-window coefficient β̂jE and the mean of the first-stage pre-event window coefficients.

The standard error of γ̂j can be used to test the statistical significance of this difference.

The second sub-approach is to compute a z-score for the difference between the event-

window coefficient and non-event window coefficients as

zj = β̂jE − µ(β̂jt,t∈Z)
σ(β̂jt,t∈Z)

, (4)

where µ() and σ() represents the empirical mean and standard deviation of a random variable,

respectively. Both of the first two approaches impose assumptions on the distribution of

coefficients that may not be satisfied in practice.

The third sub-approach is to compute a p-value based on the empirical cumulative dis-
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tribution function (CDF) of the pre-event day coefficients. Formally, this p-value is

ph = 1
TZ

∑
t∈Z

I{|β̂jt − µ(β̂jt,t∈Z)| > |β̂jE − µ(β̂jt,t∈Z)|}, (5)

where TZ is the number of non-event windows and I{} is an indicator function taking a value

of one if the condition in brackets is true and zero if the condition is false. The advantage

of the third approach over the first two is that it imposes no distributional assumptions on

the time series of the cross-sectional coefficients.

One practical consideration in implementing this approach is the choice of a pre-event

window period to use as a benchmark. The length of this window involves a tradeoff. A

longer pre-event window allows a larger sample of pre-event window coefficient observations

to use in inference, but it also increases the risk posed by time-varying return correlations.

Instability of return correlations between the event window and pre-event window periods

weakens the rationale for using the pre-event window period as a benchmark for hypothesis

testing. Nevertheless, even if return correlations change over time, using the time-series of

regression coefficients as a benchmark is almost certainly better than ignoring information

about the distribution of return correlations contained in pre-event windows. In our analysis,

we use a 252-trading day (approximately one-year) pre-event window period, which seems

like a reasonable compromise in terms of period length.

Another practical consideration is when to measure the characteristics in xit if these

characteristics are time-varying. To avoid look-ahead bias, the characteristics should always

be measured prior to a given (event or pre-event) window t. One option is to use the

characteristics measured on the most recent available date prior to the earliest pre-event

window. While this approach is simple, it may be inefficient if characteristics change over

time. The other option is to measure the characteristics as of the most recent available date

prior to window t, using more recent information where available for more recent windows.
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For example, if characteristic j is an annual financial variable, then xijt would be the value

of xj for firm i as of the most recent fiscal year end prior to the start of window t. Given

the potential efficiency gain, we adopt this latter approach in our analysis.

1.4 Time-series GLS

One disadvantage of TS-OLS is that it does not exploit information about cross cor-

relations that might allow for more efficient estimates and hence greater statistical power.

Statistical power is typically critical in testing the cross-sectional return effects of an event,

as most events would be expected to produce modest cross-sectional differences in returns,

making it difficult to distinguish differences in returns attributable to an event from noise.

We propose a more powerful alternative to TS-OLS that we call time-series GLS (TS-GLS

for short). Like TS-OLS, this approach uses the time series of cross-sectional coefficients

from pre-event window regressions to conduct hypothesis testing. However, it uses GLS

rather than OLS to estimate these cross-sectional regressions.

GLS achieves efficiency gains relative to OLS by using the inverse of the covariance

matrix of the regression errors to weight observations. Because the diagonal elements of

the covariance matrix measure the variance of the errors, this weighting addresses concerns

about heteroskedasticity by down-weighting observations with high-variance errors. Because

the off-diagonal elements measure the cross-sectional covariance among errors, this weighting

also address concerns about correlated errors by down-weighting observations with correlated

errors. Intuitively, the more correlated the errors of two observations, the less independent

information they contain, making them less informative. More efficient cross-sectional esti-

mates of both event-window and pre-event window coefficients should make tests based on

TS-GLS more powerful than those based on TS-OLS.

Estimating every element of the return covariance matrix individually is generally infea-

sible, as doing so requires at least as many days of data as firms in the sample. Even if a
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long enough time-series of returns were available, attempting to estimate every element of

the covariance matrix would likely result in overfitting, potentially making GLS less efficient

than OLS. Instead, we propose capturing the most important quanta of return covariation

using principal component analysis (PCA) and using the principal components (PCs) to

construct an estimate of the covariance matrix.

Formally, consider an N × T matrix of firm-day returns R and the first K ≤ T PCs of

R. The first PC, c1, is the N × 1 vector such that the projection of R onto c1 explains as

much of the variation in R as possible. One can find c1 by minimizing the sum of the square

of the distances from the elements of R to the projected points along c1. Alternatively and

equivalently, one can find c1 by maximizing the variance of the projected points along c1.

Note that c1 is the first eigenvector of R.

Next, consider an N × T matrix R1 that contains the residuals from the projection of R

onto c1 – that is, the orthogonalization of R to c1. The second PC, c2, is the N × 1 vector

chosen such that the projection of R1 onto c2 explains as much of the variation in R1 as

possible. The vector c2 is the second eigenvector R. Repeating this process K times results

in K PCs (i.e., eigenvectors of R), c1, c2, ..., cK. By construction, these PCs are orthogonal

to each other. If K = T , then the PCs together will explain 100% of the variation in R.

Now, consider a set of K portfolios consisting of the N stocks whose returns are given by

R, with the weights of portfolio k ∈ K given by the elements of the vector ck. Since the K

PCs are mutually orthogonal, we can treat these K portfolios as asset pricing factors. We

can then use these factors and the loadings on them to construct a covariance matrix. Let

the N × 1 vector rt denote the vector of returns for period t (the tth column of R), and let
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fk,t = ck
′rt. Assuming a linear factor structure, we can write

rit = ϕi +
K∑

k=1
λikfkt + ϵit, (6)

Cov(ϵit, ϵjt) =


σ2

i when i = j

0 when i ̸= j

. (7)

Given this structure, we can compute the estimated covariance matrix of returns as

Ω̂ii′ ≡ Cov(rit, ri′t) =


∑K

k=1 λikλi′kVar(fit) + σ2
i when i = i′

∑K
k=1 λikλi′kVar(fit) when i ̸= i′

. (8)

Note that rather than specifying factors ex ante, as is typical in asset pricing, we use PCA

to construct these factors. Our objective is not to explain the cross section of returns using

economically meaningful factors but rather to estimate covariances as accurately as possible.

It therefore better to allow the data to determine the factors rather than imposing them ex

ante. As we will see in Section 3, the first constructed factor is effectively the market factor

by construction, but the remaining constructed factors overlap little with other standard

asset pricing factors, and the factors with which they overlap vary over time.

One practical consideration when implementing TS-GLS is the number of PCs to use

in constructing the covariance matrix. The number of PCs can be any whole number be-

tween 0 and T . Using 0 PCs is equivalent to using WLS rather than GLS to estimate the

cross-sectional return regressions and accounts for heteroskedasticity but not for return cor-

relations. Using more PCs allows for more precise estimates of the return covariances. This

increased precision should increase the efficiency of cross-sectional estimates and hence of

estimates using the TS-GLS approach, at least up to a point. However, beyond a certain

point, adding more PCs results in over-fitting, which can reduce efficiency. As part of our
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analysis, we explore the optimal number of PCs to use.

2 Analysis of Different Approaches

In this section, we analyze the statistical properties of tests based on the approaches

described in Section 1.

2.1 Data and sample

Our analysis involves regressing firm-level stock returns over short windows of time on

firm characteristics. Our sample period is 1991-2021. We focus on this period because it is

long yet relatively recent and because the data necessary to construct the firm characteristics

we analyze is well-populated during this period. We begin by collecting daily firm-level stock

returns from CRSP for the period 1990-2021. We use return data starting one year prior

to the sample period because we require one year of return data prior to a given window of

time when we implement the time-series approaches described in the previous section.

We analyze eight firm characteristics, which we compute based on data from CRSP and

Compustat. Four of these are characteristics commonly studied in finance that capture

elements of a firm’s fundamentals. We compute Log(size) daily as the natural log of market

equity, which is the product of daily closing stock price and number of shares outstanding

from CRSP. We compute B/M daily as the log of the ratio of book value (Compustat ceq),

measured at the prior fiscal year end, to market equity. We compute Profit as annual gross

profit (Compustat GP ) divided by total assets (Compustat AT ). We compute Invest as

the annual growth rate of total assets (Compustat AT divided by prior-year AT minus 1).

We obtain B/M , Profit, and Invest from the open-source asset pricing project (Chen and

Zimmermann, 2021).

The other four characteristics we analyze are variables used in recent cross-sectional
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event studies. We choose these four characteristics because they are easy to replicate us-

ing Compustat data. We measure all characteristics annually. We compute Cash/AT as

cash and short-term investments (Compustat CHE) divided by total assets. We compute

Debt/AT as the sum of long-term debt (Compustat DLTT ) and debt in current liabilities

(Compustat DLC), divided by total assets. Fahlenbrach, Rageth, and Stulz (2021) study

return differences with these two variables around the arrival of the COVID-19 pandemic in

2020. We compute TaxRate as 100 times income taxes paid (Compustat TXDP ) divided

by the sum of pre-tax income (Compustat PI) and special items (Compustat SPI), set to

0 if PI < 0. Wagner, Zeckhauser, and Ziegler (2018) study return differences with this

variable around the resolution of the 2016 U.S. Presidential election. We define NY HQ as

an indicator variable equal to 1 if a firm is headquartered in New York (Compustat STATE

equal to “NY”) and 0 otherwise. Acemoglu, Johnson, Kermani, Kwak, and Mitton (2016)

study return differences with this variable around the announcement of Timothy Geithner

as nominee for Treasury Secretary in November 2008.

We match the stock return data to the four common variables based on permno and to

the four previously-analyzed variables using matched CRSP-Compustat data. The unit of

observation is a firm-day. We associate with each firm-day observation the value of each

characteristic as of the most recent available date prior to the day of the observation. The

resulting sample consists of 35,559,001 firm-days belonging to 16,766 unique firms. Table 1

presents summary statistics for the sample.

[Table 1 about here]

2.2 Cross-sectional regressions

If the returns of firms with similar characteristics are correlated in general, then a test

of the cross-sectional effect of a specific event on event-window returns may reject the null
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of no relationship too often relative to the intended size of the test. We assess the rate of

excess rejection by estimating cross-sectional regressions for each window of a given length

in our sample period and calculating the rejection rate for each characteristic at the 1% and

5% significance levels. For each of the four variables analyzed in prior studies, we exclude

windows overlapping with the event window as defined in the study.

We compute rejection rates based on default standard errors, White-adjusted standard

errors, and standard errors clustered at the Fama-French 49-category industry level. In

addition, we compute rejection rates based on industry-clustered standard errors where we

also control for Fama-French 49-category industry fixed effects since the combination of

industry fixed effects and industry clustering is common in cross-sectional event-window

return regressions. We begin by estimating univariate regressions of 1-day returns on each

characteristic separately. Figure 1 presents the results.

[Figure 1 about here]

Rejection rates at the 1% and 5% significance level based on default standard errors

average 33.0% and 43.4%, respectively, across the eight characteristics. Rejection rates

are greater for characteristics more closely linked to fundamentals. They are highest for

Log(size) and B/M and lowest for the NY HQ indicator. This conclusion is not surprising

since day-to-day innovations in expected future cash flows are likely to exhibit more com-

monality among firms with similar fundamentals than among firms headquartered in the

same state. These results suggest that rejection rates based on default standard errors are

commonly an order of magnitude larger than the intended rejection rates under the null of

no differential treatment effect associated with the event.

Non-event day rejection rates based on White-corrected standard errors are generally

smaller than those based on default standard errors, and those based on standard errors

clustered at the industry level smaller still. However, rejection rates based on clustered
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standard errors are still far higher than the intended rejection rates under the null, averaging

18.8% and 29.5% at the 1% and 5% significance levels, respectively. Adjusting standard errors

to account for cross-sectional correlation in errors at the industry level does not appear to

adequately account for return correlations. Including industry fixed effects in addition to

clustering at the industry level has little impact on excess rejection rates, decreasing these

rates in some cases but increasing them in others. Overall, the evidence in Figure 1 suggests

that tests based on standard cross-sectional event study regressions cannot reliably separate

out a hypothesized differential treatment effect of an event from ambient cross-sectional

return correlations.

In this baseline case, we estimate separate univariate regressions for each characteristic

and use 1-day event windows. In practice, researchers analyzing cross-sectional differences

in returns around an event often estimate multivariate regressions and, in some cases, use

multi-day event windows to account for uncertainty about the exact time at which the market

learned about the event or slow market reaction to the event. We next present mean rejection

rates across the eight characteristics for all four combinations of univariate and multivariate

regressions and 1-day and 5-day event windows. Table 2 presents the results.

[Table 2 about here]

Rejection rates are higher for 5-day event windows than for 1-day event windows. Re-

jection rates based on default or White-adjusted standard errors are lower for multivariate

regressions than for univariate regressions. However, those based on industry-clustered stan-

dard errors, either with or without industry fixed effects included, do not differ much be-

tween univariate and multivariate regressions. The smaller differences for industry-clustered

standard errors are likely attributable to the fact that controlling for other observable char-

acteristics accounts for at least some of the cross-correlation in returns associated with a

given characteristic. Overall, rejection rates are considerably higher than the intended size

18



of the tests in all cases, suggesting that cross-sectional regressions are highly unreliable in

assessing differences in treatment effects associated with an event in general.

2.3 Time-series OLS

We begin our analysis of TS-OLS by computing rejection rates for these tests. We

estimate OLS regressions of returns on characteristics separately for each day in the sample

period. Then, for each day in 1991-2021, we conduct hypothesis testing by comparing the

coefficient for that day to the distribution of the coefficients on the 252 trading days prior.

We analyze each of the three specific sub-approaches to implementing these tests described

in Section 1. Figure 2 presents the results.

[Figure 2 about here]

As anticipated, rejection rates using TS-OLS are much closer to the intended rejection

rates under the null hypothesis than those based on standard cross-sectional regressions.

However, rejection rates are still too high when we conduct hypothesis testing using the 2-

stage regression or z-score approaches. The excess rejection rates of these tests arise from fat

tails in the distribution of coefficients that these tests fail to take into account. In contrast,

rejection rates based on p-values using the empirical CDF of pre-event window coefficients

are only slightly higher than the intended rate. Because of the fat-tail issue, we recommended

relying on p-values based on the empirical CDF for determining statistical significance when

using the TS-OLS approach and consider only this specific sub-approach for the remainder

of the analysis.

We next assess the power of TS-OLS with 1- and 5-day event windows. One at a time,

for each window of the specified length in the period 1991-2021 and each characteristic, we

add an artificial cross-sectional “effect” to returns of 25bp per one-standard deviation change

in the characteristic, creating an artificial event window. We then estimate cross-sectional
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OLS regressions for that window and for each window of the same size in a pre-event period

consisting of the 252 days prior, where there is no added effect. Finally, we compute a p-

value for the artificial event window coefficient based on the empirical CDF of the pre-event

window coefficient time series and use that p-value to determine statistical significance at

the 5% level. We also conduct the same exercise introducing a larger 50bp return effect per

one-standard deviation change in the characteristic. Figure 3 presents detection rates based

on these tests.

[Figure 3 about here]

Overall, detection rates are fairly low, suggesting that TS-OLS may lack the power to

reliably detect differences in returns associated with an event. With a 1-day event window,

the mean detection rate across the eight characteristics is 40.2% when the added return is

25bp per standard deviation change in a characteristic and 72.5% when the added return

is 50bp. Detection rates are generally higher for characteristics where excess rejection rates

from standard cross-sectional tests (Figure 1) are lower. Intuitively, stronger return correla-

tions among firms that are similar on a characteristic add more noise to the time-series of

pre-event day coefficients, which makes detecting a relationship on the artificial event day

more difficult.

Detection rates are considerably lower with a 5-day event window than with a 1-day

window, averaging only 15.0% for a 25bp effect and 32.5% for a 50bp effect. The degree

to which detection rates decrease with the length of the event window is a serious concern,

since papers often analyze multi-day event windows, especially when the exact timing of the

event is difficult to determine. While the limited power of TS-OLS overall is a concern, this

approach still represents a substantial upgrade over standard cross-sectional tests since it at

least gets the size of the test approximately right.
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2.4 Time-series GLS

We assess the size and power of TS-GLS the same way we do for TS-OLS. However,

before doing so, we first need to specify the number of PCs that we will use to estimate

the return covariance matrix. The optimal number of PCs, which maximizes efficiency, is

unclear a priori. We use two approaches to gain insight into the optimal number of PCs to

use. The first approach involves analyzing the relationship between the number of PCs K

and the variance of the minimum variance portfolio constructed using an ex-ante estimate of

the covariance matrix for returns Ω based on PCA, as specified in equation (8).7 Given an

estimated covariance matrix for returns on t, Ω̂t, the minimum variance portfolio’s weights

wmvp,t are specified by

wmvp,t = Ω̂−1
t 1

1′Ω̂−1
t 1

, (9)

where 1 is a vector of ones, and the denominator assures that the wmvp,t sums to one.

The relation between K and the volatility of the minimum variance portfolio is infor-

mative about the incremental information content of each additional PC for forecasting the

inverse of the next-day covariance matrix – exactly the object we use for GLS. This approach

also has the advantage of not being specific to any firm characteristic. Figure 4 plots this

relationship. The variance of the minimum variance portfolio decreases sharply with the ad-

dition of first several PCs. The variance flattens out around 50 PCs and is largely invariant

until it begins sharply increasing around K = 245. As K approaches 252, the maximum

available given our choice of a T = 252-day window for daily returns in the pre-period, the

PCA approach over-fits the covariance matrix and produces a worse out-of-sample forecast

for the true covariance matrix.
7Clarke et al. (2006) shows that using PCA to estimate the covariance matrix and form a minimum-

variance portfolio of US equities results in substantial risk reduction with little or no reduction in average
returns.
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[Figure 4 about here]

The second approach involves analyzing the relationship between the ratio of daily GLS

and OLS coefficients and the number of PCs. This approach is informative about the degree

to which GLS reduces estimation noise relative to OLS by increasing estimation precision.

Specifically, for each characteristic, we estimate cross-sectional OLS and GLS regressions for

each day in the sample period, using the 252 trading days prior to a given day to construct

the covariance matrix we use in the GLS regressions. We then compute the ratio of the

time-series standard deviation of GLS coefficients to the time-series standard deviation of

OLS coefficients. We repeat this exercise varying the number of PCs we use to construct the

covariance matrix between 1 and 250. For each characteristic, Figure 5 plots the relationship

between the standard deviation ratios and the number of PCs used.

[Figure 5 about here]

As with the relationship between minimum variance and number of PCs, the ratio of

GLS to OLS coefficient standard deviations declines sharply with the first few PCs and is

essentially flat between 50 and 250 principal components. Based on the results in Figures

4 and 5 and in the spirit of choosing a round number, we use 100 PCs in the remainder of

the analysis and recommend this as the default number of PCs. However, the results are

virtually unchanged if we use any number of PCs between 50 and 240.

To compare the statistical power of the TS-GLS and TS-OLS approaches, we repeat the

tests where we introduce a 25bp or 50bp return effect per one standard deviation change in

a characteristic, using GLS instead of OLS to estimate cross-sectional regressions. Table 3

presents a comparison of the mean detection rates across the eight characteristics at a 5%

significance level using TS-GLS and TS-OLS.

[Table 3 about here]

22



TS-GLS performs much better than TS-OLS at detecting the introduced effect. For a

1-day event window and a 25bp effect, the mean detection rate is 70.4% using TS-GLS,

compared to 40.2% for the OLS approach. The improvement in performance appears to

be approximately proportionate to the TS-OLS rejection rate, though naturally the im-

provement is constrained when TS-OLS detection rates are already high. The benefits of

using TS-GLS rather than TS-OLS then appear to be greatest when the TS-OLS detection

rates are in an intermediate range. Overall, it appears that explicitly accounting for cross-

sectional return correlations increases the statistical power of tests based on the time series

of coefficients substantially.

3 Meaning of Principal Components

In this section, we analyze the information about drivers of return cross correlations

embedded in the PCs. We begin by plotting the fraction of total variation in return that

the first 1, 5, 25, and 50 PCs explain by year. Figure 6 presents these plots.

[Figure 6 about here]

Two observations are worth making. First, the first few PCs explain a relatively small

fraction of returns. For example, in most years, the first five 5 PCs explain less than 30% of

the variation in returns, while the first 25 PCs explain less than 50% of the variation. Second,

the fraction of total return variation that the first few PCs explain varies considerably over

time. It is higher in years in which large market-moving shocks occurred. For example,

the first few PCs explain a larger fraction of the return variation during the financial crisis

(2008–09) and in the aftermath of the onset of the COVID-19 pandemic (2020–2021).

PCs of stock returns can be interpreted as portfolio weights and used to construct factor

portfolios. We next examine the relationship between PC-based factor portfolio returns,
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calculated by implementing PCA on a balanced panel of daily individual stock returns in

each calendar year, and the returns on eight pre-specified factors in the years 2008, 2013,

2020, and 2021. We choose 2008, 2020, and 2021 because these were years in which major

market-moving events occurred. We choose 2013 to provide a relatively quiescent year for

comparison.

Four of the pre-specified factor portfolios are based on well-known factors from the asset

pricing literature. These are the equity market portfolio (MktRf), small-minus-big portfolio

(SMB), high-minus-low portfolio (HML), and up-minus-down portfolio (UMD). The other

four factor portfolios are constructed as long-only equal-weighted combinations of stocks or

portfolios to capture period-specific conditions. The Tech factor portfolio is constructed from

the Software, Hardware, and Chips Fama-French 49 industries; the Finance portfolio from

Banks, Real Estate, and Finance industries; the Covid portfolio from Meals, Healthcare,

and Drugs industries. The Memes factor portfolio combines whichever subset of GameStop

(GME), AMC (AMC), Bed Bath and Beyond (BBBY), and Blackberry (BB) stocks were

available to trade on each day.

For each of the first five PCs in each year, we compute the returns on a portfolio where the

weights are the elements of the PC. We then compute the absolute values of the correlations

between each of these PCs and each of the pre-specified factors. Table 4 presents the results.

Panels A, B, C, and D present the results for 2008, 2013, 2020, and 2021, respectively.

[Table 4 about here]

The first PC-weighted portfolio return is highly correlated with the equity market port-

folio in all four years. By construction, the first PC-weighted portfolio is approximately the

equal-weighted market portfolio. The correlation is less than one because the equity market

portfolio return is value-weighted. Because of this distinction, the first PC-weighted portfolio

return is also correlated with the SMB factor portfolio return.
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For 2008, the second and fourth PC portfolio-weighted returns are both highly correlated

with the Finance, HML, and UMD factor portfolio returns. These two PCs both appear to

pick up common exposure to the financial crisis. For 2020, the third PC-weighted portfolio

return is highly correlated with the HML and SMB factor portfolio returns, while the

fourth is correlated with the Covid factor portfolio return. For 2021, the third PC-weighted

portfolio return is highly correlated with the Memes factor portfolio return, while the fourth

is highly correlated with the HML, Finance, and Tech factor portfolio returns. For 2013, a

relatively quiescent year, none of the second through fifth PC-weighted portfolios are strongly

correlated with any of the factor portfolio returns.

One conclusion from this analysis is that the factors driving cross-sectional correlations

in returns vary substantially from year to year and often represent factors unique to a period.

Another is that it is often difficult to determine what drives cross sectional correlations in any

given period. These conclusions both further suggest that specifying dimensions of return

correlation a priori – for example, by clustering on a dimension like industry – is likely to

do a poor job of accounting for important sources of cross-sectional correlation in returns.

4 Conclusions

Our results suggest that standard cross-sectional regressions of returns around an event

on firm characteristics reject the null hypothesis far too frequently given the intended size

of the test to be reliable for conducting hypothesis testing and that common adjustments to

standard errors are inadequate in addressing this problem. A time-series approach based on

cross-sectional OLS regressions addresses the problem with excess rejection rates but pro-

vides limited power to detect cross-sectional differences in event-window returns, especially

over longer windows. A times-series approach based on cross-sectional GLS regressions, us-

ing principal component analysis to encode the most important sources of cross-sectional
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correlation into the covariance matrix, appears to offer substantially more statistical power.

While this approach is more complex, we plan to provide a Stata module that will implement

both this approach and the time-series approach based on cross-sectional OLS regressions

automatically.

Our first set of results could indicate broader problems with clustering standard errors

in empirical corporate finance. Corporate finance researchers rely heavily on clustering

to address concerns about correlated regression errors. It is difficult in general to assess

the effectiveness of clustering in accounting for correlations in errors. Because we observe

returns at a high frequency and they are largely serially uncorrelated, we are able to assess the

effectiveness of clustering in cross-sectional event studies. Our results suggest that clustering

is ineffective in accounting for correlated errors because return correlations are too complex

for pre-specified clusters to capture. While we can only speculate, it seems likely that the

same issue would arise with any regressions where the dependent variable is connected to

firm fundamentals.
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Figure 1: Cross-Sectional OLS Rejection Rates

This figure depicts rejection rates from univariate cross-sectional OLS regressions of 1-day
returns on each of eight characteristics. The sample period is the 7,811 trading days from
1991–2021. For the four characteristics from papers studying the cross section of returns
around an event (Cash/AT , Debt/AT , TaxRate, and NY HQ), days in the event window
analyzed by the paper are excluded. The figure shows rejection rates based on default stan-
dard errors, White-adjusted standard errors, Fama-French 49-category industry clustered
standard errors, and industry clustered standard errors from regressions where we also in-
clude industry fixed effects. The top panel shows rejection rates at the 1% level, while the
bottom panel shows rejection rates at the 5% level.
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Figure 2: Time-Series OLS Rejection Rates

This figure depicts rejection rates from time-series OLS regressions of 1-day returns on each
of eight characteristics. The sample period is the 7,811 trading days from 1991–2021. For
the four characteristics from papers studying the cross section of returns around an event
(Cash/AT , Debt/AT , TaxRate, and NY HQ), days in the event window analyzed by the
paper are excluded. The figures shows rejection rates based on the three specific approaches
described in Section 1.3. The top panel shows rejection rates at the 1% level, while the
bottom panel shows rejection rates at the 5% level.
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Figure 3: Time-Series OLS Detection Rates with Added Effects

This figure depicts detection rates at the 5% significance level from time-series OLS regres-
sions of returns on each of eight characteristics, with an effect of either 25bp or 50bp added
to returns for each one standard deviation increase in the given characteristic in each ar-
tificial event window. The sample period is the 7,811 trading days from 1991–2021. For
the four characteristics from papers studying the cross section of returns around an event
(Cash/AT , Debt/AT , TaxRate, and NY HQ), days in the event window analyzed by the
paper are excluded. The top panel shows rejection rates when the added effect is 25bp, while
the bottom panel shows rejection rates when the added effect is 50bp.
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Figure 4: Minimum Variance Portfolio Variances and # of Principal Components

This figure depicts the standard deviation of realized returns for a minimum-variance port-
folio of US equities as a function of the number of principal components used to form an
out-of-sample forecast for the covariance matrix of returns (K). Our covariance matrix fore-
casts are constructed using the first K PCs from implementing PCA on balanced panel of
daily returns over the prior 252 trading days, assuming that other than via these PCs each
stock’s return is uncorrelated. The sample period is the 7,811 trading days from 1991–2021.
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Figure 5: TS-GLS/TS-OLS Coefficient Standard Deviations and # of Principal Components

This figure plots the ratio of the time-series standard deviation of cross-sectional GLS coef-
ficients to the time-series standard deviation of cross-sectional OLS coefficients from regres-
sions of 1-day returns on each of the characteristics against the number of PCs we use in the
time-series GLS regressions. The sample period is the 7,811 trading days from 1991–2021.
For the four characteristics from papers studying the cross section of returns around an event
(Cash/AT , Debt/AT , TaxRate, and NY HQ), days in the event window analyzed by the
paper are excluded.
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Figure 6: Explanatory Power of Principal Components

This figure plots the mean percent of the daily cross-sectional variance of returns that a given
number of principal components explains by calendar year, for 1, 5, 25, and 100 principal
components. The sample period is the 7,811 trading days from 1991–2021.

35



Table 1: Summary Statistics

This table presents summary statistics for the sample of firm-day observations we use in our
analysis. Log(size) is the natural log of market equity, which is the product of daily closing
stock price and number of shares outstanding from CRSP. B/M is the log of the ratio of book
value (Compustat CEQ), measured at the prior fiscal year end, to market equity. Profit is
gross profit (Compustat GP ) divided by total assets (Compustat AT ). Invest is the ratio
of capital expenditures (Compustat CAPEX) to total assets (Compustat AT ). Cash/AT
is cash and short-term investments (Compustat CHE) divided by total assets. Debt/AT is
the sum of long-term debt (Compustat DLTT ) and debt in current liabilities (Compustat
DLC), divided by total assets. TaxRate is 100 times income taxes paid (Compustat TXDP )
divided by the sum of pre-tax income (Compustat PI) and special items (Compustat SPI),
set to 0 if PI < 0. NY HQ is an indicator variable equal to 1 if a firm is headquartered in
New York (Compustat STATE equal to “NY”) and 0 otherwise.

Variable Firm-Days Unique Firms Firms/Day Mean Median σ Within-day σ

Return (%) 35,559,001 16,766 4,410 0.09 0.00 4.92 4.41
Log(size) 34,092,227 15,506 4,365 19.37 19.25 2.21 2.09
B/M 32,799,415 15,249 4,199 -0.76 -0.68 1.03 1.01
Profitability 27,676,880 12,588 3,543 0.33 0.31 0.37 0.37
Investment 31,396,391 14,339 4,020 0.19 0.06 1.96 1.19
Cash/AT 34,081,926 15,496 4,363 0.18 0.09 0.22 0.22
Debt/AT 33,933,548 15,478 4,344 0.22 0.17 0.21 0.21
Tax Rate 33,510,699 15,484 4,290 16.61 7.62 21.23 20.82
NY HQ 34,092,227 15,506 4,365 0.08 0.00 0.27 0.28
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Table 2: Cross-Sectional OLS Regression Rejection Rates

This table presents mean rejection rates at the 1% and 5% statistical significance levels from
cross-sectional OLS regressions of returns on each of eight firm characteristics. It shows
rejection rates based on default standard errors, White-adjusted standard errors, Fama-
French 48-category industry clustered standard errors, and industry clustered standard errors
where industry fixed effects are included in the regression for 1-day and 5-day return windows
and for univariate and multivariate regressions (where all eight characteristics are included
as explanatory variables). The sample period is the 7,811 trading days from 1991–2021.

Mean 1% rejection rate
Window Regression Default SE White SE Clustered SE Clust SE + FE

1 day Univariate 33.0 28.5 18.8 16.9
1 day Multivariate 22.7 18.8 16.0 14.6
5 days Univariate 31.9 27.6 18.2 16.4
5 days Multivariate 22.0 18.1 15.5 14.2

Mean 5% rejection rate
Window Regression Default SE White SE Clustered SE Clust SE + FE

1 day Univariate 43.4 39.4 29.5 27.3
1 day Multivariate 33.3 29.3 26.5 24.3
5 days Univariate 41.9 38.0 28.5 26.4
5 days Multivariate 32.2 28.4 25.7 23.5
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Table 3: Detection Rates for Added Cross-Sectional Effects: TS-OLS vs TS-GLS

This table presents mean detection rates at the 5% statistical significance levels from uni-
variate TS-OLS and TS-GLS regressions with artificially added cross-sectional event-window
return effects across eight firm characteristics (explanatory variables). Return effect sizes
are 25bp and 50bp per standard deviation change in a characteristic. For each artificial
event window, the non-event period is the 252 trading days prior to the start of that win-
dow, and we use the 252 trading days prior to the event window to construct the principal
component-based covariance matrix that we use in estimating GLS regressions. The table
shows detection rates for TS-OLS and TS-GLS in percents, the difference in these rates, and
the ratio of these rates. The sample period is the 7,811 trading days from 1991–2021.

Window Effect (bp) TS-OLS TS-GLS Diff Ratio
1 day 25 40.2 70.4 30.2 175%
1 day 50 72.5 94.2 21.7 130%
5 days 25 15.0 29.0 14.0 193%
5 days 50 32.5 59.6 27.1 183%
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Table 4: Evolving Correlations With Principal Components

This table presents the correlations between factor portfolios constructed from the the first
five principal components of individual stock returns in a calendar year and a variety of other
factors. constructed from individual stock returns. The first four are the market (MktRf),
size (SMB), value (HML) and momentum (UMD) factors, as collected from Ken French’s
data library. We also compute correlations with four period-specific factors: Tech, the
equal-weighted average return of Software, Hardware, and Chips Fama-French 49 industries;
Finance, the average return of Banks, Real Estate, and Finance industries; Covid, the
average return of Meals, Healthcare, and Drugs industries; and Memes, the average return
of whichever subset of GameStop (GME), AMC (AMC), Bed Bath and Beyond (BBBY),
and Blackberry (BB) stocks are available to trade on each day. Panel A presents results for
2008, Panel B for 2013, Panel C for 2020, and Panel D for 2021.

Panel A: 2008

‘Mkt’ ‘Crisis’ ? ? ?
PC 1 2 3 4 5
% x-sectional var. explained 19.7% 2.8% 2.4% 2.0% 1.9%
|ρ(PCi, MktRf)| 96% 7% 7% 7% 1%
|ρ(PCi, SMB)| 24% 34% 24% 4% 4%
|ρ(PCi, HML)| 8% 50% 4% 50% 6%
|ρ(PCi, UMD)| 11% 38% 15% 58% 8%
|ρ(PCi, T ech)| 2% 5% 4% 18% 8%
|ρ(PCi, F inance)| 13% 56% 14% 47% 3%
|ρ(PCi, Covid)| 6% 14% 13% 18% 1%
|ρ(PCi, Memes)| 2% 2% 5% 9% 6%
R2 98% 46% 9% 39% 3%

Panel B: 2013

‘Mkt’ ? ? ? ?
PC 1 2 3 4 5
% x-sectional var. explained 8.2% 3.9% 2.3% 1.9% 1.4%
|ρ(PCi, MktRf)| 93% 8% 1% 2% 2%
|ρ(PCi, SMB)| 33% 0% 11% 7% 7%
|ρ(PCi, HML)| 3% 9% 4% 7% 16%
|ρ(PCi, UMD)| 0% 9% 7% 3% 6%
|ρ(PCi, T ech)| 5% 3% 0% 5% 12%
|ρ(PCi, F inance)| 6% 8% 5% 1% 5%
|ρ(PCi, Covid)| 1% 7% 6% 5% 1%
|ρ(PCi, Memes)| 1% 2% 2% 6% 1%
R2 98% 4% 3% 2% 7%
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Panel C: 2020

‘Mkt’ ? ‘Value’ ‘Covid’ ?
PC 1 2 3 4 5
% x-sectional var. explained 20.5% 4.0% 2.6% 2.4% 2.1%
|ρ(PCi, MktRf)| 88% 6% 21% 25% 0%
|ρ(PCi, SMB)| 36% 25% 2% 31% 8%
|ρ(PCi, HML)| 34% 18% 79% 4% 8%
|ρ(PCi, UMD)| 31% 23% 73% 1% 18%
|ρ(PCi, T ech)| 25% 13% 44% 1% 1%
|ρ(PCi, F inance)| 34% 12% 68% 20% 4%
|ρ(PCi, Covid)| 19% 5% 2% 46% 18%
|ρ(PCi, Memes)| 23% 7% 19% 37% 9%
R2 98% 13% 77% 41% 11%

Panel D: 2021

‘Mkt’ ? ‘Memes’ ‘Value’ ?
PC 1 2 3 4 5
% x-sectional var. explained 12.2% 6.8% 3.7% 3.5% 2.4%
|ρ(PCi, MktRf)| 74% 6% 17% 23% 11%
|ρ(PCi, SMB)| 53% 28% 27% 7% 6%
|ρ(PCi, HML)| 1% 1% 6% 84% 19%
|ρ(PCi, UMD)| 24% 8% 13% 26% 3%
|ρ(PCi, T ech)| 14% 22% 14% 45% 6%
|ρ(PCi, F inance)| 19% 8% 3% 58% 13%
|ρ(PCi, Covid)| 16% 3% 11% 3% 14%
|ρ(PCi, Memes)| 15% 45% 81% 10% 1%
R2 86% 26% 70% 78% 7%
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