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Abstract

We evaluate approaches to estimating demand elasticities in dynamic asset
markets, both theoretically and empirically. We establish strict, necessary con-
ditions that the dynamics of instrumented asset price variation must satisfy for
valid identification. We illustrate these insights in a general equilibrium model
of dynamic trade and derive the magnitude of biases that arise when these con-
ditions are violated. Estimates based on static IO models are severely biased
when the instrumented price variation is persistent or predictable. Empirically,
we show that commonly used instruments yield elasticity estimates that are off
by orders of magnitude, or even have the wrong sign. In contrast to standard
multiplier calculations, our theory characterizes the dynamic asset market in-
terventions required to sustain a given price path support process, with direct

implications for policies such as Quantitative Easing (QE).
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1 Introduction

A longstanding literature in finance, beginning with Shleifer (1986) and Harris and
Gurel (1986), has examined whether demand curves for financial assets are down-
ward sloping and whether the time horizon of measurement matters. More recent
contributions have applied tools from the structural industrial organization (I0) liter-
ature to estimate institutional demand for long-lived securities, concluding that asset
markets are inelastic (e.g., Koijen and Yogo (2019), hereafter KY19).

In this paper, we assess the identification strategies underlying these estimates
when agents can trade assets dynamically. We find that instruments used in the ex-
isting literature applying static IO demand models introduce large and systematic
biases. These biases stem from the following conceptual tension. In a standard IO
setting with static product characteristics, a price elasticity measures how demand re-
sponds to a marginal price change, holding the product’s intrinsic features constant.
In contrast, in asset markets, a central characteristic of a security is the stochastic
stream of future cash flows it delivers to the investor. In particular, since an investor
can sell securities to others at future points in time, the path of future trading prices
{Pr} > is itself an intrinsic characteristic. Any candidate instrument that shifts the
contemporaneous price at time ¢ while also affecting future resale values thus vi-
olates the exclusion restriction. In particular, if price shifts exhibit momentum or
persistence, the resulting estimates can no longer be interpreted as price elasticities.
These concerns are not merely theoretical: in practice, financial institutions actively
engage in dynamic trading strategies. Yet such strategic trading dynamics are absent
in static IO models.

Our contribution is both theoretical and empirical. On the theory side, we de-
velop a general equilibrium model of dynamic trade to identify necessary conditions
for valid elasticity identification using either time-series or cross-sectional holdings
data. Specifically, we show that price variation induced by valid instruments must
generally (i) affect prices for at most one trading period, and (ii) be unanticipated
ex ante. These conditions ensure that the instrument does not itself introduce or
alter state variables in traders’ dynamic optimization problems. While the absence
of anticipation is particularly critical for time-series identification (e.g., using index

reconstitution event studies),' full resolution of price shifts within a single trading

"When price changes induced by index inclusion effects are either anticipated or resolve over
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period is necessary for both time-series and cross-sectional approaches.

Using our model, we derive simple formulas that quantify the biases in elasticity
estimates when these conditions are violated. In particular, we obtain such formulas
for two stylized types of price dynamics: (1) gradual resolution of price shifts, and
(2) predictable price build-up, as in the case of momentum (see Binsbergen et al.,
2023). For the resolution case, we show that the bias in the estimated elasticity is
proportional to the probability that a price shift resolves within an agent’s portfolio
adjustment interval. For example, if institutions can rebalance daily and a price shift
resolves with a constant per-period probability corresponding to an expected dura-
tion of two years, the elasticity estimate has a magnitude of only 1/730th of the true
elasticity. In the momentum case, the bias is even more severe: the estimated elas-
ticity takes the opposite sign of the true elasticity. The intuition is straightforward.
When variation inducing a positive price shift also predicts higher future returns,
agents rationally tilt toward the security, creating the false appearance of a negative
elasticity.

While our bias corrections apply under stylized dynamics for price path shifts
— such as constant per-period resolution or build-up probabilities — we emphasize
that no general adjustment factor can correct the distortions inherent in static cross-
sectional identification and event-study time-series approaches.

A simple example illustrates this central point. Suppose the Federal Reserve
unexpectedly and credibly announces that it will do “whatever it takes” to raise the
price of an asset by 1% for one year, relative to the counterfactual price path without
intervention. After one year, the program is permanently discontinued. To streamline
the argument, assume the asset pays no dividends during that year and that investors
have log utility.

How does this exogenous increase in prices affect investors’ optimal portfolio
weights? The answer is: not at all. Once the surprise announcement is made and
the price has shifted upwards, the return distribution going forward is unaffected by

the intervention until the program ends in one year. As a result, both static cross-

longer horizons, the resulting elasticity estimates are generally biased. Early studies, such as Harris
and Gurel (1986), documented mean reversion within two weeks, but more recent work suggests that
the index inclusion effect has either disappeared for the S&P 500 index (Greenwood and Sammon,
2025) or exhibits longer-lasting effects for other indices. See Chang et al. (2015); Beneish and Whaley
(1996); Lynch and Mendenhall (1997); Wurgler and Zhuravskaya (2002).



sectional and event-study-based approaches using data on portfolio weights around
the time of the event yield elasticity estimates of zero.

But does this imply that asset markets are inelastic? Our answer is: not at all.
The crux is that the shock upon impact alters the asset’s intrinsic characteristics, that
is, its future resale values — it does not speak to how elastic investors are. To see
why, note that investors will strongly tilt their portfolio away from the asset in the
final trading period before the one-year mark, when the price is expected to fall by
1%. For the program not to unravel by backward induction, the Federal Reserve
must therefore purchase large quantities of the asset at that time—reflecting log in-
vestors’ true, highly elastic behavior. Rational investors will dump the asset in the
last trading period before the program ends, anticipating that an abnormal price drop
is imminent.”

This example illustrates that in dynamic trading environments, variation in hold-
ings observed around the time of an exogenous price shift may provide no mean-
ingful information about either the true demand elasticity or the quantity the Federal
Reserve must purchase. In this case, both static, cross-sectional identification and
event-study time-series identification fail.

Note also that the conditions for identification we characterize cannot be relaxed
simply by the econometrician choosing a lower data sampling frequency, as this fre-
quency is distinct from the one at which agents can adjust their portfolios. Contem-
poraneous variation in portfolio weights reflects return opportunities over the next
trading period, not over the interval until the econometrician next observes or sam-
ples holdings. In the above example, investors’ portfolio shares are constant through-
out the whole year and only briefly shift in the last trading period before reverting

back to their original level.?

2A closely related policy intervention is a forward commitment by the Federal Reserve to under-
take any purchases necessary, one year from now, to lift the asset’s price by 1% for a single trading
period, relative to the case of no intervention. By backward induction, prices will already rise at the
time of the announcement, as agents anticipate being able to resell the asset at a 1% higher price at the
end of the year. By construction, this intervention involves no trade between the Federal Reserve and
other market participants at the time of the announcement. As a result, the incorrectly inferred unit
price elasticity of demand is zero.

3Similarly, our points about elasticity identification are not resolved by appealing to the notion of
long-run elasticities. In standard product markets, a long-run elasticity considers a longer time horizon
over which consumers are able to adjust—for example, by switching to alternative products. This
typically leads to more elastic responses. Moreover, whereas a regular good can plausibly maintain
its intrinsic characteristics in the face of persistent price changes, this is infeasible for financial assets



Our empirical results are closely connected to these issues. In particular, we
find that cross-sectional variation in KY19’s instrumented price variable, me (instru-
mented market equity), does not satisfy the conditions required for valid elasticity
identification in dynamic trading environments. In fact, cross-sectionally, higher val-
ues of me are either unrelated—or even positively related—to average returns over
the following month. Rational investors, therefore, should not tilt away from high-
me stocks but, if anything, overweight them. According to our model, using such
variation as an instrument mechanically yields elasticity estimates that are close to
zero or even negative—the opposite sign of the true price elasticity.

Consistent with this prediction, we find that across institutions and assets, roughly
half of the price elasticity estimates in the KY19 framework turn out negative when
the estimation is not constrained to produce positive values.* These results under-
score that even when true demand elasticities are large (in excess of 1,000) using
instruments that induce persistent or momentum-type dynamics in price shifts me-
chanically yields estimated price elasticities close to zero, or even negative.

Our results also emphasize that the concept of exogeneity typically invoked in
economic models is insufficient for the proper identification of demand elasticities
in financial markets. Even if a shock that shifts prices would be regarded as truly
exogenous within the context of a model (e.g., if induced by a supply shock randomly
chosen by nature), it still cannot be used to identify demand elasticities if it alters the
intrinsic characteristics of the asset. However, an exogenous shock that affects prices
across multiple trading dates induces exactly such a change. As a result, it introduces
or alters dynamic state variables in traders’ optimization problems, causing elasticity
estimates to reflect changes in these state variables rather than the contemporaneous
price.

Our analysis of asset demand in a dynamic general equilibrium setting yields
sharp predictions regarding the effectiveness of dynamic asset purchase programs
and other supply-affecting policies. First, we show that the persistence of a policy’s
intended price path support has a dramatic impact on the size of the initial supply
intervention required to achieve it. For instance, under a constant per-period resolu-

tion probability, increasing the expected duration of a 1% price shift from one week

that agents can trade dynamically.
4Specifically, this occurs when we relax KY19’s assumption that the estimated beta on instru-
mented market equity in the demand equation is bounded above by one.



to one year reduces the required residual supply shock at inception by 98%. This
reflects the fact that rational, optimizing traders lean far more aggressively against a
price shift when it is expected to reverse quickly. The results also differ markedly
depending on whether policy commitments have a fixed expiration date—as in our
introductory example—or resolve randomly.

Second, we characterize the path of dynamic asset market interventions required
to sustain a given price path support process. This analysis reveals significant limi-
tations of the typical multiplier calculations considered in the literature. Even in the
case of a single risky asset and a safe asset, there is no single multiplier that char-
acterizes the relationship between purchase quantities and the resulting price path
response. In particular, purchase programs that solely promise future interventions
naturally generate infinite announcement multipliers, mirroring the inverse of an er-
roneously inferred zero price elasticity. Overall, our findings have useful implications
for the literature on quantitative easing and the dynamics of policy interventions (see,
e.g., Haddad et al., 2025a).

Our insights challenge how elasticity estimates are commonly interpreted in the
existing literature. Davis et al. (2025), for example, argue that limited price pass-
through and the presence of unspanned factors imply that price elasticities are ex-
pected to be low, on the order of 5. In contrast, we show that in dynamic trading en-
vironments, estimates based on persistent or predictable price shocks capture agents’
responsiveness to changes in asset characteristics rather than to purely contempo-
raneous price changes. As a result, such estimates cannot be interpreted as price
elasticities. He et al. (2025) also examine asset demand in a dynamic general equi-
librium setting, but explore agents’ optimal quantity response to changes in expected
returns, not prices. In contrast, our paper is concerned with price elasticities. This
distinction is central in our analysis of the implications of the temporal disconnect
between price level shifts and return opportunities and for our derivations of neces-
sary conditions for instrument validity in the estimation of price elasticities. He et
al. (2025) show that observed demand slopes with respect to expected returns can
differ from true underlying slopes because exogenous supply shifts affect endoge-
nous risk—specifically, return volatility and covariance—and alter the comovement
of returns with future investment opportunities.

Gabaix and Koijen (2023) examine multipliers both empirically and theoretically.



They explain the large magnitudes of empirically estimated multipliers, particularly
for the stock market, within a dynamic general equilibrium framework by introduc-
ing two frictions in capital allocation through institutions: fixed-share mandates and
inertia. Moreover, Gabaix and Koijen (2023) show that persistence in flows leads to
higher multiplier estimates and define a “market multiplier” as the multiplier associ-
ated with a fully persistent inflow. The authors state that rational models predict that
this market multiplier is around 1/20, whereas empirical estimates in the literature,
as well as those obtained using their approach, yield values between 1.5 and 5.

Our paper contributes to this literature on multipliers by establishing several key
results. First, multipliers used to measure price impact at the inception of multi-
period purchases are insufficient and often misleading in characterizing the rela-
tionship between quantities and prices. This is because initial price movements are
driven primarily by expectations about the future path of holdings rather than by the
initial purchases themselves. In contrast, we characterize the entire path of incre-
mental holdings required to sustain a given path of price shifts. Second, we show
that permanent interventions can plausibly exhibit market multipliers of around 2 or
higher without requiring additional frictions. Third, empirical estimates of multi-
pliers should be expected to take high values (up to infinity) in practically relevant
settings involving position build-up, such as central bank asset purchase programs.
Importantly, such evidence on multipliers is fully consistent with market participants
exhibiting very high price elasticities of demand.

Finally, our analysis is distinct from the important ongoing debate about the em-
pirical validity of different substitution structures assumed in static models (e.g.,
Fuchs et al. (2025); Haddad et al. (2025b); Koijen and Yogo (2025)). While these
papers highlight limitations of cross-sectional model structure, our contribution is
to isolate dynamic violations of identification assumptions. By abstracting from
spillovers and complementarities, we provide clean and tractable measures of how
intertemporal dynamics distort elasticity estimates even in otherwise well-specified

static demand models.



2 Model

We consider a continuous-time environment with two groups of agents — an investor
group explicitly maximizing CRRA utility and an “outside group” introducing exoge-
nous residual supply shocks. The latter group can be interpreted as noise traders or
corporations engaging in state-contingent share issuances or repurchases. We start
by detailing CRRA investors’ trading and consumption opportunities conditional on
postulated equilibrium asset price dynamics. Thereafter, we characterize the outside
group’s residual supply dynamics. We intentionally reverse engineer supply shocks
to obtain a minimally complex state space and a clean characterization of the dynam-

ics of shocks that can identify demand elasticities.

Preferences. There is a measure one of CRRA investors whose utility from con-

sumption is given by
u(lC)=——, (1)

where ¥ > 0 is the coefficient of relative risk aversion. The subjective discount rate

applied to future utility is denoted by p.

Assets. Agents can invest in multiple risky assets j = 1,...,J and in a risk-free asset
with return r¢. We postulate that absent price-shifter shocks detailed below, prices of
the risky assets each follow:

dij

P' = ,Lljdl‘ + GJ'?AdBA?z + Gj,ldBjJ: 2)
Jit

where dB,; represents a common “aggregate” shock and dBj; an asset-specific
shock. The Brownian motions dBy4; and {dB j,,}le are mutually independent. The
actual trading prices can be further affected by price-shifter shocks. Specifically, the

equilibrium trading price P;, of asset j satisfies

P, = PP, with 5, € Q 3)



where fB;s; represents a log price shift applying to asset j, as similarly defined in
Binsbergen and Opp (2019) and Binsbergen et al. (2023), Q denotes the discrete set
of possible shifter states s;, and f8; governs the exposure of asset j to the shifter-
state process {s¢}7—,. In Section 3.3, we formally derive the outside group’s residual

supply dynamics that yield the postulated prices P;; in equilibrium.

Event dates. To allow for well-defined demand elasticity estimation using discrete
price shifts in a continuous-time setting, we introduce discrete event dates. At these
points in time, price shifts may build up or change and agents may consume (disperse
capital). While we initially consider the case in which agents can trade continuously,
we will also analyze the setting in which trading is restricted to these discrete event
dates. Event dates occur at the jump times 7, of a Poisson process N; with intensity
A > 0. The parameter A allows us to freely adjust the average frequency at which

these events occur.

At each event date, the following ordered events occur:

1. Price wedge state transitions. The wedge state w moves to w’ with the Markov

transition probabilities g(s'|s).

2. Consumption. With probability 7c, existing CRRA investors exit and are re-
placed by a new cohort with identical post-jump wealth W’. Exiting investors
liquidate their assets and consume their wealth W’. At the same time, newly en-

tering investors purchase assets with their wealth W',

3. Portfolio choice. Let 8 = (6, ..., 9])T be the vector of portfolio shares invested
in the J risky assets; the fraction in the risk-free asset is 6y = 1 — 1'6. CRRA

investors choose their risky shares 0, .

A portfolio policy 6, is {.%, }-adapted and square-integrable. To guarantee positive
wealth in the presence of price jumps, the admissible set in the case of continuous

trade is defined as

O(s) ={0: 1+0 K,y >0Vs with g(s'|s) > 0}. 4)



3 Analysis

In this section, we first characterize CRRA investors’ optimal portfolio policies un-
der the postulated price dynamics. Second, we examine the difference between true
demand elasticities and estimators derived from holdings data. Third, we close the
model by characterizing the residual supply shock dynamics induced by a second

group of outside agents that yield the postulated price dynamics in equilibrium.

3.1 Value Function and Optimal Trading

Over a small horizon df, absent an event date, only diffusive risk is borne by the

CRRA investors and wealth dynamics are given by:

aw, J

Wt = I’fdl‘ + Z GJ-J [(,u] - I’f)dt +0jA dBA’, + GdeBjJ] . &)
t j:1

Define the covariance matrix

Y =ox0) +diag(07;,...,07;), 0a:=(014,...,054)

Then Var[dW;/W;| = 8T £ 60dt. Upon the arrival of an event date, a jump in the
shifter state w may occur. Finally, with probability 7, a CRRA agent liquidates its
assets and consumes post-jump wealth W’. Otherwise, with complementary proba-
bility (1 — m¢), the agent continues and a new portfolio is chosen.

Let V(W,s) be the continuation value immediately after an event sequence. We
obtain the Hamilton—Jacobi—Bellman (HJB) equation

0= meax{ PV Vi W [ry+ (1= r1)10] + S View W20 S0

+ AE 7 (u(W') =V (W.5)) + (1= 7) (VW) =V W) ]} (6)
where W’ denotes post-jump wealth:

W=W[1+0 k|, s~ ls), )
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and where we define:

K(]; — eﬁj(s/is)—l, K_’S’S/ — (K'(l) . K'(J))T- (8)

5,870 P!

We conjecture and verify that the value function takes the form
V(W,s) =u(W)-A(s). )

Substituting Viy = W YA (s) and Viyw = —yW ~7~1A(s) into (6) and dividing by u(W)
yields the following system of equations solved by the function A(s) for s € Q:

0= —pA(s)+ (1 —p)A(s) [rf+ (n—r1)0—1y0"s 9}

+ 2[4 19) [7e+ (1= 1AW - (1467 wee) T =AG)]. (10)

Differentiating (10) with respect to each 6; and dividing by (1 — ¥) yields the first-
order conditions for all j=1,...,J:

0=A(s) [(uj —rf)— Y(Ee)j]

+AY q(s'ls) [7e+ (1= m)A)] &) - (14607 ky ) . (11)

When none of the assets are exposed to the shifter state (8; = 0 for all j), equa-
tion (11) collapses to the usual Merton (1969) condition for optimal portfolio shares.
However, more generally, the additional term related to shifter-state transitions per-
sists. Importantly, an analogous term also appears under log utility (see Appendix A.1),
so it should not be interpreted as a mere intertemporal hedging motive. Rather, it re-
flects discrete changes in the shifter state w at event times. Together, equation (10)
and the J first-order conditions (11) determine the functions A(s) (for s € Q) and the

optimal risky-share vector 6*(s).

3.2 Demand Elasticity Estimates and Biases

In this section, we examine under what conditions true demand elasticities can be
accurately estimated based on holdings data and what biases arise if such conditions

are violated.
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True price elasticities and the frequency of trade. As a first step, we show that
the frequency with which agents can trade has relevant implications for the magni-
tudes of true demand elasticities. In our baseline setup, agents can trade continuously,
which is a useful benchmark that increases analytical tractability. Yet, given various
practical limitations to truly continuous trade, we are also interested in examining
elasticities when institutions can trade only at discrete dates, such as at a daily fre-
quency. Correspondingly, we start by characterizing the true own-price elasticity in
two cases: (1) continuous trade and (i1) discrete trade occurring only upon the event

dates T,.

Proposition 1. Suppose there is one risky asset. In the case of continuous trading,

the own-price elasticity is infinite,

Jdln6'
dlnP,

& = (12)

In contrast, if agents can trade only upon the discrete event dates 1,, the elasticity

takes finite values

dIn 6/
= — oo 1

) IInP < oo, (13)

and satisfies for short expected trading intervals: €p/A =~ W with

-1
(u—rp)?

A= Amc- (- —] . 14
A (Mc+p A=D|rr+F (14)
Proof. See Appendix A.2. [

In the limiting case of continuous trade, true price elasticities are infinite. This
result obtains for the following reasons. An own-price elasticity quantifies how
a marginal log-change to the contemporaneous price affects demand, keeping un-
changed future prices at which an agent can resell the asset. In the case of contin-
uous trade, this definition means that a log price shift & := dInP at time ¢ needs to
resolve by the next instant (¢ + dt), implying an incremental instantaneous resolu-
tion return —& that lowers the expected rate of return relative to the baseline level of

. This discrete change in the expected return of the risky asset from p to (u — &)
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implies a discrete (non-marginal) tilt in the optimal portfolio share 8*.% Correspond-
ingly, a marginal price shift causes discrete portfolio share adjustment, leading to the
result of an infinite price elasticity under continuous trade.

In contrast, the second part of Proposition 1 shows that elasticities are finite when
agents can trade only at discrete dates. The reason is that a marginal price shift
& = dInP at time ¢ then resolves over a discrete period of time, leading to only a
marginal adjustment in the trading period’s expected return. Correspondingly, now a
marginal price shift induces only a marginal tilt in the portfolio share 0, yielding a
finite elasticity.

In sum, substantial differences between discrete trading and continuous trading
emerge since the resolution of a given contemporaneous price shift has a more muted

impact on returns per unit of time when trading dates are less frequent.

Estimating elasticities with price-shifter processes. We now examine the elastic-
ity estimates an econometrician would obtain when using instrumented price varia-
tion induced by incremental exposures to a general price-shifter state process {s¢}r_,.
Because InP; = Bjs+ 1nI3j, a one-unit change in the exposure f3; causes an s;-unit

change in the log price of asset j at time . We then define the state-exposure elastic-
ity:

%
M) 1= —1% | (s)
Bj=0

This expression measures how the date-# optimal portfolio share, 8/, responds to a
marginal exposure to the shifter-state process {s;}+_,. Importantly, while the initial
price shift is df3;s; (as seen in the denominator), the date-r portfolio share 6, gen-
erally responds to the dynamics of the entire future path of price shifts {df;s:}7_,.
Moreover, a state-exposure elasticity is specific to the dynamic properties of the state
process associated with a given instrument, {s;}3_,, and generally captures changes
to the asset’s fundamentals (which, in a dynamic trading environment, include other

agents’ future willingness to pay).
While empirical variation creating an exposure to such a state process can help

identify the state-exposure elasticity (15), the requirement for own-price elasticity

Note that the tilt is not infinite in magnitude due to asset’s risk exposures.
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identification are significantly more stringent. The following lemma details three
conditions under which econometricians can infer the own-price elasticity from an

incremental exposure of an asset to a shifter-state process {s¢}5_,.

Lemma 1. The own-price elasticity for asset j can be inferred from holdings data via
variation in the asset’s exposure to the shifter-state process {sz}%_, if the following

properties are satisfied:

1. The incremental price shift at time t fully and permanently resolves by the next

trading date.
2. The exposure change is unanticipated.

3. The exposure change moves only the price of asset j, while leaving all other

prices unaffected, B..; = 0.

The lemma lays out three conditions for identification. First, variation used for
estimation must leave prices at future trading dates (resale values) unaffected. Other-
wise, it alters the fundamental characteristics of the asset by changing the future cash
flows it can deliver to the investor. This requirement applies equally to time-series
and cross-sectional identification strategies. The issue is that any variation induc-
ing changes in resale values after the date when portfolio holdings are observed and
used for estimation effectively alters an asset’s intrinsic characteristics (its exposure
to state dynamics) — not just the current asset price — and thus directly violates the
exclusion restriction.’.

Second, time-series variation inducing a price change at time ¢ and used for es-
timation must be unanticipated by investors since otherwise, the associated holdings
change does not just reflect a date-t price change but also previous expectations of
that price change, resulting in biased elasticity estimates. For instance, if a posi-
tive price shift was already expected to occur, then the optimal pre-shock holding

is elevated due the prospect of an incremental positive return. As a result, after the

6KY’s “identification comes from cross-sectional variation in the investment universe and not from
time-series variation in assets moving in and out of the investment universe.” KY acknowledge that
they “maintain the assumption that the wealth distribution across other investors is predetermined and
exogenous to current demand shocks.” and that “this assumption ultimately appeals to a static view of
portfolio choice.”

14



positive price shift has realized, the portfolio weight would decline more than it other-
wise would, and the elasticity estimate based on time-series changes would be biased
upwards (if this were the only deviation from Lemma 1).

Third, to isolate the own-price elasticity, the variation exclusively affects the price
of the asset under consideration. A simultaneous change in other asset prices would
generally introduce cross-asset substitution effects into the elasticity estimate. This
third condition of Lemma 1 relates to the ongoing debate about conditions under
which shocks affecting multiple assets can properly identify own-price elasticities in
static settings (see Fuchs et al., 2025; Haddad et al., 2025b; Koijen and Yogo, 2025).
We note that condition 3 is not per se necessary for identification in all environments.
Rather than investigating the generality and empirical plausibility of specific substi-
tution structures, our paper focuses on identification issues arising in the context of
environments where long-lived assets such as equities are dynamically traded (e.g.,
by mutual funds). In these settings, conditions regarding price shift dynamics as laid
out in points 1 and 2 of Lemma 1 are crucial (see also Section 4), irrespective of the

particular cross-sectional substitution preferences.

We now explicitly investigate how violations of the first condition of Lemma 1
impact elasticity estimates. The following proposition compares the true demand
elasticity under discrete trading, €p, to the elasticity estimates obtained based on
a shock that introduces a price shift that persists for multiple trading periods, thus

violating condition 1 of Lemma 1.

Proposition 2 (Gradual price-shift resolution). Suppose conditions 2 and 3 of Lemma 1
are satisfied and that there is one risky asset. Further, trade can occur only on event
dates T and a marginal log price shift away from the price level P fully and perma-
nently resolves with the per-event resolution probability mg. We obtain the following
relations between the true elasticity €p and the elasticity estimated from this price

shift:

1. One-period shifts: For mg = 1, condition 1 of Lemma 1 is satisfied and estimated

elasticity coincides with the true elasticity,
&€ =¢p. (16)

2. Persistent shifts: For g < 1, the demand elasticity estimated from variation in

15



the wedge state is biased toward zero. For short trading periods (large A), the
following relation obtains:
&
— & TR. 17
e = TR (17)
3. Permanent shifts: The demand elasticity estimated from permanent price level

shifts is zero,

o>
I
)

(18)

Proof. See Appendix A.2. 0

The proposition reveals that the per-period resolution probability 7x is directly
linked to the bias in elasticity estimates. As an illustration, suppose an institutional
investor can trade daily, and a price shift used for identification persists for two years
on average. Then, the estimated elasticity would underestimate the true elasticity
dramatically, in this case by a factor of 1/730 = 0.14%. Thus, seemingly small
persistence can significantly bias elasticity estimates downward.

Next, we turn to another important scenario, momentum-type price-shift dynam-
ics, to highlight their particularly severe implications for elasticity mismeasurement.
As we will show in our empirical analysis in Section 4, such dynamics are potentially

relevant in the context of KY19’s instrumented prices.

Proposition 3 (Momentum dynamics). Suppose that conditions 2 and 3 of Lemma 1
are satisfied and that there is one risky asset. Further, trade can occur only on event
dates T. After an unanticipated log price shift d away from P, the price shift builds
up to 2d B with probability ng per event period before permanently and fully resolving
back to the initial level P, with probability ng. For short trading periods (large M),
we obtain the following relations between the true elasticity €p and the elasticity

estimated from the initial price shift:
~ —Tg. (19)
Proof. See Appendix A.3. [
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Proposition 3 reveals the severe biases that variation triggering momentum dy-
namics introduce into elasticity estimates. Momentum causes investors to anticipate
further price increases, thereby reversing their portfolio response compared to a pure
contemporaneous price increase. Consequently, estimated elasticities are opposite in
sign to the true elasticity. The more likely the subsequent build-up () the more
extreme is the bias.

3.3 Equilibrium Pricing and Asset Purchase Programs

In this section, we first close the model by characterizing the supply shock dynam-
ics that sustain the postulated price dynamics and portfolio problem described in
Sections 2 and 3.1. The construction is deliberately minimal and ensures that no
new state variables beyond s; are introduced into CRRA investors’ maximization
problem.” We then proceed to characterize how price elasticities and state-exposure
elasticities relate to the multipliers discussed in the literature and derive the dynamic
asset purchase programs required to induce a given stochastic price path differential

in equilibrium.

3.3.1 Supply Behavior of the Outside Bloc

Let x; denote a baseline number of shares outstanding of asset j. At any time 7,
denote by 9;-‘ the optimal portfolio share invested in asset j by the unit mass of CRRA
investors, and let s; be their aggregate wealth. The outside group chooses its unit

position according to

*
0; Wi
b
Pj;

Mmjr=Xj— ij?"'?‘la (20)

which implies unit market clearing at every instant:

01, W,
Pj;

nj,+mj,=x;, with nj,:= j=0,...,J. (1)

In general, in an economy with heterogeneous agents, the wealth distribution emerges as a rele-
vant state variable.
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Consequently, the law of motion of s, and the transition matrix g(s’|s) specified in
Section 2 fully describe the evolution of equilibrium price shifts relative to the price
level ﬁj. No separate tracking of the outside group’s wealth or portfolio is necessary.

The idea that stochastic supply shocks generate price movements dates back
at least to Grossman and Stiglitz (1980). In a dynamic context, Greenwood and
Vayanos (2014) examine a term-structure model in which risk-averse arbitrageurs ab-
sorb shocks to the demand and supply for bonds of different maturities. The present
model similarly captures such shocks but reverse engineers their magnitudes so as to
match the equilibrium price dynamics postulated in Section 2.

Several familiar economic mechanisms can rationalize the sources of such sup-
ply shocks. In particular, the outside group of agents affecting supply may consist
of noise traders, central banks, or corporations engaging in state-contingent share

issuance or repurchases.

3.3.2 Elasticities, Multipliers, and Dynamic Asset Purchase Programs

In this section, we investigate how elasticities, which are partial equilibrium objects
pertaining to specific investors, relate to multipliers, which quantify the impact of
purchases on equilibrium market prices. In its simplest form, a multiplier measures
how the market capitalization of an asset changes when a particular type of investor
engages in a one-period purchase of the asset.

As we emphasize below, once we move to dynamic purchase programs, the con-
cept of a multiplier measuring the initial price impact of a purchase becomes prob-
lematic. This is because the entire stochastic path of future purchase commitments,
rather than the initial transaction, drives the price adjustment at the time of the pro-
gram’s announcement. Indeed, a dynamic purchase program involving no purchases
upon impact can still have large effects on equilibrium prices simply by altering ex-

pected future resale values.

Price elasticities and one-period purchases. Suppose the outside block purchases

an additional marginal unit of asset j. Starting from the market-clearing condition in

18



changes:

dm;, — it p (22)
It — del Il

we obtain the following relation by multiplying both sides by x; and P;, and rear-

ranging terms:

-1
de’[ _ dij ) _dlnnj,[ ) l’ljJ (23)
Pj,t Xj dlnPj,, Xj
S~~~ N~ ~~
Market cap change Investment Multiplier

That is, the relative change in the equilibrium price is given by the product of the

fraction of shares outstanding purchased and the multiplier. The multiplier is the

. . . . . Inn;

inverse of the product of CRRA investors’ price elasticity of unit demand, —jlﬁ—?ji,
. Js

and their existing ownership footprint, % The latter term measures the size of
J

market participants that can take the other side of the outside block’s trades.

Note that a change in the price P;, also induces adjustments in CRRA investors’
holdings of other assets i = j. Therefore, the outside block must compensate for
these spillover adjustments in order to keep the prices of other assets unaffected.

It is further useful to characterize the relationship between the price elasticity of
unit demand and the price elasticity of the portfolio weight €. Using the identity

0r,W,
Lo— L N
nji = —p, > We obtain:

_dlnnj, _(dej*,tﬁ aW; Qif_ﬁeif>i
dInP;, dPj: Pj; dPjPj: Pj;Pj;
= &at1-6j. &Y

Njt

The difference between the two elasticity concepts arises from the fact that the im-
pact of a price increase on unit demand can be decomposed into three channels: its
effect on the portfolio weight, its effect on the investor’s wealth level, and the direct

mechanical effect of making the asset more expensive.

Dynamic purchase programs and multipliers. We now examine how the unan-
ticipated initiation and public announcement of a dynamic purchase program affects

asset price dynamics.
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Proposition 4. The unanticipated initiation and public announcement of the follow-
ing process of incremental holdings by the outside block is necessary to induce a

stochastic log price path differential {dBjs.}7_, for asset j:

dmj. |~ e iz
{ {71 } = {dﬁjs‘v M+ (1-677)] ]—T} - (25)
Xj T=t Xj ) e=
Proof. See Appendix A 4. [

While asset j’s market price appreciates by s;df3; upon announcement of the
purchase program, this effect is sustained by the full process of incremental unit
holdings {dm;}7_,;, as detailed in equation (25). Among other factors, this pro-
cess depends on the dynamics of state-exposure elasticities {1;(sz) }7_, as defined in
equation (15), the buyer footprints {n; ¢ /x:}7_,, and their portfolio shares {67 . }7_,.
In other words, the multiplier, defined as the ratio of the relative price appreciation to

the initial fraction of shares purchased,

L [+ (1 6]) /] (26)

does not actually reveal the future purchases that are ultimately necessary to induce
the initial price reaction. To illustrate this issue, we examine in Case Study 1 below
the example of purchase program announcements, such as those sometimes initiated
by central banks.

Moreover, because the program is intended to affect only the price dynamics of
asset j, the outside block must also adjust its holdings in other assets to compensate
for substitution effects by CRRA investors. We will explore this issue in more detail

in Case Study 2 below.

Case Study 1: Purchase Program Announcements

Central bank announcements of asset purchase programs provide a useful and rel-
evant example illustrating the limited informational content of multipliers. Sup-
pose the Federal Reserve announces that it will purchase an asset in future states
of the world at prices higher than would prevail absent intervention. Anticipating
this higher future resale value, the equilibrium price increases immediately at time ¢,

even though the Federal Reserve does not purchase any assets at that time.
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As a result, the multiplier measured at inception of the program (26) becomes
infinite for any such announcement that promises future asset purchases. Yet, asset
purchases are clearly not infinitely impactful—the multiplier is misleading and does
not quantify the causal impact of date-t purchases on date-f equilibrium prices.

For CRRA investors to be content with a higher portfolio share in the asset (which
results after the price increase), the expected return must rise. Consequently, mo-
mentum dynamics arise endogenously from such policy announcements, generally
causing the state-exposure elasticity 1, to become negative. This is not a special
knife-edge case of merely theoretical relevance but rather a generic outcome for pro-
gram announcements that do not immediately involve purchases upon inception, or
feature dynamic position build-up. These issues underscore that estimating multipli-
ers associated with dynamic residual supply shock processes is generally problematic

and yields limited insights.

Case Study 2: Permanent Price Shifts

We now consider the special theoretical case of a constant and permanent log price
shift affecting the entire stock market, an example also discussed in Gabaix and Koi-
jen (2023). Our objective is to characterize the purchase quantity dynamics required
to induce such a shift and to provide a simple calibration to gauge magnitudes. In
this scenario, the shifter state is constant; that is, s; = 1 for all T > t.

Suppose that the potential investors taking the other side of the purchases are
CRRA investors with a relative risk aversion of 2 and initial holdings equal to 60%
of shares outstanding, i.e., ny,/x;, = 0.6. Assume that, prior to the announcement
of the dynamic purchase program, the market risk premium is 6%, volatility is 20%,
and the dividend yield is 1.7%. In this setting, CRRA investors’ risky portfolio share
before the unanticipated intervention is then given by:

9*_[,L1—I”f_ 0.06
' ye2 2.022

=0.75. 27)

Immediately after the onset of the asset purchase program, the expected return on

the stock market declines due to a reduction in the dividend yield component of the
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expected return:

d-L21
di _ TRAT D (28)
dp dp P

Correspondingly, we obtain the following sensitivity of the portfolio share 6; with

respect to the exposure parameter f3;:

dGl* B —Dl/Pl
dﬁl ’}’-Glz

= —0.2125. (29)

That is, for a 1% price shift, AB; = 0.01, the risky portfolio share decreases from
0.75 to 0.748. We then obtain the following state-exposure elasticity:

1d11’191* . D1/P1 . 0.017
S dﬁl B=0 Uy —ry 0.06

n = =0.28 (30)
Further, converting this to the corresponding state-exposure elasticity in terms of
unit demand gives 1; + (1 — 6;°) = 0.53. Substituting these values into equation (26)
yields a multiplier upon impact (at time ¢) equal to:

dp,

dmi,Jxi (M +(1-61))) -nL,/x,r1 —3.14. 31)
N

However, as emphasized earlier, it is the entire process of future holdings that in-
duces the price increase at the inception of the program. In particular, equation (25)

simplifies to the following dynamics for the incremental holdings of the intervening
party:

{d’:l” }T:t —{dBy - 0.53 - ny./x1 )2, (32)

To raise the total market capitalization by AP; = 1%, the outside block must
purchase 1%/3.14 = 0.32% of shares outstanding upon impact. Thereafter, it must
adjust this incremental exposure dynamically, depending on how other investors’
footprint, n; ¢ /x1, evolves over time as a consequence of their risky portfolio share
0/ and the stochastic realization of future stock market returns.

Moreover, to ensure that the purchase program does not also affect the price path
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of the risk-free asset, the outside block must adjust its holdings as follows (see Ap-
pendix A.4):

- P
{dmos }o = {—dml,flﬁ} . (33)
T=t

I

Initially, at time ¢, the bond adjustment by the outside block merely funds its in-
cremental stock market holding. However, for T > ¢, the outside block must step
into any gap in risk-free asset holdings by CRRA investors, relative to the counter-
factual. As a result, we obtain a stochastic process for bond holdings adjustments,
{dmoﬂ }:: .» which depends on how the stock market performs relative to the risk-
free asset, {;‘)—:z 7—;» as well as on the process of stock market holdings adjustments,
{dmm }c:: .- For example, consider a path where the stock market outperforms the
risk-free asset. In the counterfactual without intervention, CRRA agents would have
become wealthier and increased their bond holdings over time. With the intervention,
the outside block must offset this effect by progressively increasing its bond holdings
as the stock market’s relative valuation rises.

Overall, even in this stylized case, the asset purchase program is far more complex
than what the multiplier suggests, as it requires managing an entire stochastic path of

holdings in both risky and risk-free assets.

Case Study 3: Constant Per-Period Resolution Probabilities

As a final case study, we examine price shifter dynamics characterized by a constant
per-period resolution probability. As shown in Section 3, the more persistent the price
shifts are, the less CRRA investors optimally adjust their portfolio shares. Hence, by
equation (20), persistent price movements can be supported by smaller variations in
the outsiders’ net supply, m,, upon impact. In contrast, the transitory price dynamics
required for identification under Lemma 1 induce larger swings in ;. To sustain
such dynamics, the outside block must inject (or withdraw) correspondingly larger

quantities of the asset. This leads to the following corollary.

Corollary 1 (Persistence and magnitudes of supply shocks). Suppose the conditions
laid out in Proposition 2 are satisfied. For a given marginal price shift that re-

solves with the per-event resolution probability g, the initial unit risky-asset demand
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change by outsiders satisfies
‘dml(né)’ < }dml(n}/e/)’ forall 0<mp<my<l.

Proof. See Appendix A.S. 0

While Corollary 1 pertains to the single-asset case, we illustrate the same me-
chanics for a multi-asset setting in Figure 1, with parameter values reported in Ta-
ble 1. The shifter state w follows the resolution Markov chain described in Propo-
sition 2. The figure plots the magnitude of supply shocks required upon impact to
induce a given log price shift.

The results show that shock persistence, measured by the expected time to res-
olution, has a dramatic effect on the size of the required initial supply shock. The
baseline “one-period” shock corresponds to a weekly event interval and assumes full
resolution within that period. If, instead, the price shock persists for a quarter on
average, the required supply shock upon impact falls to approximately 7%—-8% of
the one-period baseline. With an average duration of one year, the magnitude further
declines to just 2%, and for a two-year resolution window, to less than 1%.

Simply put, more persistent shocks require much smaller supply interventions
upon impact to achieve a given price shift, as CRRA investors’ optimal demand
response 1is substantially muted when price changes are expected to persist. Im-
portantly, these patterns do not reflect frictions that impede portfolio adjustments;
rather, they arise endogenously from optimal dynamic trading behavior in response
to changes in asset characteristics—specifically, the dynamics of expected resale val-

ues.
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Figure 1: Supply Shock Magnitudes Upon Impact. The figure illustrates the magnitude
of supply shocks required to induce a given log-price shift upon impact, as a function of
the shock’s persistence, measured by the expected time to resolution, %ER Throughout, the

inception of supply shocks is assumed to be unanticipated. We plot the relative supply shock,
|Am; (7z)|
a1 ¥ aclusts the expected 1y | |
the resolution Markov chain described in Proposition 2. See Appendix A.6 for further details.

, where varying 7z adjusts the expected time to resolution. The shifter state w follows

Table 1: Calibration and Relevant Statistics

Panel A. Investor preferences and timing

Parameter Symbol  Value Unit / Note

Risk-free rate s 0.04 annual

Subjective discount rate P 0.02 annual

Relative risk aversion Y 2 -

Event intensity A 52 weekly rebalancing opportunities
Consumption probability  m¢ 0.002 per event date

Number of risky assets J 3 -

Panel B. Asset characteristics (per risky asset j)

Parameter Symbol  Value Unit / Note
Price drift (all j) iy 0.09 =rr+0.05
Common-factor volatility o4 ; (0.238,0.190, 0.190) per asset
Idiosyncratic volatility o1, (0.300, 0.300, 0.300) per asset
Log price shift APy 0.0011 -
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4 Instrument Validity: Statistical Tests

In this section, we build on the insights from our theoretical analysis in Sections 2
and 3 and conduct a series of empirical tests to examine the characteristics and va-
lidity of the statistical instruments used in the literature—particularly those proposed
by KY19. KY19 recover the slope of an investor’s demand schedule from a purely
cross-sectional estimation. They define the instrument for the log market equity of

asset n from the perspective of institution i as

__ 1;(n)
() = log | ¥ Aj—— , (34)

that is, the log market value of firm » under the counterfactual where all institutions
other than i hold an equal-weighted portfolio within their investment universe.

As we explore the implications of time-series variation and predictability, we
index the instrument by calendar time ¢ and write me;;(n). Throughout, we denote
by me;(n) the actual log market value of asset n at time 7, and by 6;(n) the portfolio
weight of institution 7 in asset n.

In KY 19, the demand equation takes the form of a cross-sectional logit specifica-

tion:
61'7[ (n)
Oi,t (0)

K—-1
= eXP{BOJ,zmez(”) + Z Bri s Xk (n) + Bk} €ii(n), (35)
k=1

where x;;(n) denotes observable fundamental k for asset z at time 7, and &;,(n) is an
institution-asset-specific demand shifter (an unobserved taste shock). We stack the
characteristics in the vector x,(n).

Under KY19’s identifying assumptions, me;(n) serves as a valid instrument for

me, (n): it shifts the supply curve but is assumed to be orthogonal to €;;(n), that is,

E[gs(n)|me;i;(n),x:(n)] = 1. (36)

4.1 Descriptive Statistics

In constructing the dataset for our empirical analysis, we follow KY19 both in terms
of data sources and data selection criteria. After excluding observations where size

falls below the NYSE 10th percentile breakpoint, we compute time-series averages
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of cross-sectional descriptive statistics (including percentiles) for various variables
of interest. Table 2 reports these statistics for the stationary variables in our dataset.
For non-stationary variables, we present corresponding statistics for successive five-
year periods in Table 3. As in KY19, our sample period is 1980Q1-2017Q4, and all
characteristics represent signals measured at quarter-end. Accounting variables are
lagged by six months relative to market variables.

The reported variables are computed as follows. Profitability (profit) is defined
as operating profits divided by book equity, where operating profits equal revenues
(REVTS) minus cost of goods sold (COGS), SG&A expenses (XSGA), and interest
expenses (XINT). Investment (Gar) is the annual log growth rate of book assets. The
numerator in the dividend-to-book ratio (divA_be) i1s the sum of dividend payouts
over the past 12 months.

Market betas (beta) are estimated using 60-month rolling windows, retaining
quarter-end values. The book-to-market ratio (BtM) is computed as six-month-lagged
book equity divided by end-of-quarter market capitalization. Book equity is calcu-
lated as stockholders’ equity (SEQ), plus deferred taxes and investment tax credit
(TXDITC), minus the redemption value of preferred stock (PSTKRV), and set to
missing if the result is negative.® The momentum return (MOM) at the end of quar-
ter ¢ is the compounded return over the past three quarters ( — 1, — 2, t — 3) plus the
first two months of quarter ¢.

The component of the log market capitalization attributed to variation in me is
constructed as follows. For each quarter ¢, we run a cross-sectional regression of the

form
me;(n) = a; + by x me;(n) + ¢;x;(n) + &(n), (37)

where x;(n) contains the four characteristics described above: profit, Gat, divA_be,
and beta. We then compute b, x me;(n) to extract the component of me;(n) at-

tributable to variation in the instrument, controlling for the observables x;(n).

81f SEQ is missing, we use the sum of common equity and preferred stock (CEQ + PSTK). If this
is also missing, we use the difference between book assets (AT) and total liabilities (LT). If PSTKRV
is missing, we use the liquidating value (PSTKL). If this is also missing, we use the total value of
preferred stock (PSTK).
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Table 2: Summary Statistics: Stationary Variables

Variable Mean Std p25 pS0 p75
PROF 0.21 0.24 0.13 0.22 0.32
INV 0.12 0.21 0.01 0.08 0.19
DIV 0.02 0.03 0.00 0.01 0.04
BETA 1.14 0.62 0.70 1.05 1.49
BtM 0.78 0.92 0.35 0.59 0.95
MOM 0.21 0.52 —0.06 0.13 0.36
Table 3: Summary Statistics: Non-Stationary Variables
Panel A: me
Statistic 1980-85 1985-90 1990-95 1995-00 2000-05 2005-10 2010-17
Average CS Mean  4.07 5.08 5.75 6.47 7.27 7.833 8.36
Average CS P25 3.24 4.48 5.17 6.13 7.02 7.61 8.12
Average CS P50 4.15 5.09 5.75 6.50 7.30 7.79 8.31
Average CS P75 5.09 5.78 6.34 6.87 7.56 8.04 8.62
Average CS Std 1.32 091 0.78 0.63 0.48 0.38 0.48
Panel B: me
Statistic 1980-85 1985-90 1990-95 1995-00 2000-05 2005-10 2010-17
Average CS Mean  5.50 5.93 6.02 6.52 6.90 7.44 7.74
Average CS P25 4.43 4.80 4.81 5.35 5.75 6.35 6.61
Average CS P50 5.28 5.70 5.76 6.21 6.60 7.15 7.51
Average CS P75 6.33 6.84 7.00 7.40 7.73 8.22 8.59
Average CS Std 1.24 1.36 1.48 1.46 1.47 1.38 1.43
Panel C: b x me

Statistic 1980-85 1985-90 1990-95 1995-00 2000-05 2005-10 2010-17
Average CS Mean  3.23 5.39 7.33 8.05 10.48 13.50 14.43
Average CS P25 2.57 4.75 6.60 7.63 10.12 13.11 14.01
Average CS P50 3.29 5.39 7.33 8.09 10.52 13.42 14.34
Average CS P75 4.03 6.12 8.08 8.54 10.89 13.85 14.87
Average CS Std 1.04 0.95 0.99 0.78 0.70 0.66 0.82
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For all three non-stationary variables, the average cross-sectional mean trends
upward over time, as expected. Interestingly, while the cross-sectional dispersion
of log size (me) remains roughly constant throughout the sample period, the cross-
sectional spread (in log terms) of me declines over time. This decline results in a

narrowing cross-sectional spread of b x me.

4.2 Instrumented Market Equity and Future Returns

As highlighted in our theoretical analysis in Sections 2 and 3, investors’ portfolio
weights respond to price level shifts only to the extent that these shifts affect the
return distribution going forward. In particular, for a myopic investor, the relevant
return distribution is that up to the next trading date.

Correspondingly, we now examine how cross-sectional variation in instrumented
market equity me;,(n) induces cross-sectional variation in expected returns over dif-
ferent horizons, controlling for standard asset pricing factors commonly used by in-
stitutional investors.

If cross-sectional variation in me;,(n) does not translate into resolution returns
by the next trading date, a myopic investor’s optimal portfolio weights will remain
unresponsive to this variation. Consider, for example, two stocks with identical ob-
servable characteristics x;(n), except that one is priced 1% higher, both today and at
the next trading date. Absent dividends before the next trading date, both stocks offer
identical return opportunities. As a result, a myopic investor will have no incentive
to tilt her portfolio weights away from the higher-priced stock.

Moreover, dividends have quantitatively little impact on this baseline result. Con-
sider, for example, a monthly rebalancing frequency. Suppose the “cheaper” stock
has a monthly dividend yield of % =20 basis points. Then, the dividend yield for the
more expensive stock is % = 19.8 basis points. If the dividend yield accounts for
20% of the expected return, the two stocks would have expected returns of 100 basis
points and 99.8 basis points, respectively — a difference of just 0.2 basis points. In
other words, there is hardly any incentive to tilt portfolio weights, provided that both
stocks are exposed to idiosyncratic risk.

In contrast, in the former case of persistent mispricing, we compare two assets
that for all intents and purposes look identical from the perspective of a myopic in-

vestor. This example motivates empirically testing our key conditions for identifica-

29



tion, in particular, whether instrumented variation in market equity is associated with
corresponding (full) resolution returns of the same magnitude over the next trading
horizon.

Importantly, this response is entirely distinct from the case where the full cross-
sectional price difference of 1% resolves by the next rebalancing date. In that case,
the expensive asset’s expected return would be 100.2 basis points lower than that of
the other asset, giving the investor a strong incentive to tilt away from the higher-
priced stock. However, only this latter scenario identifies investors’ true demand
elasticity. By contrast, in the case of persistent price level shifts, we are comparing
two assets that, for all intents and purposes, appear identical to a myopic investor.

This example motivates our empirical tests of identification condition 1 of Lemma 1
—specifically, whether instrumented variation in market equity is associated with
corresponding (full) resolution returns of the same magnitude over the next trading
horizon.

To begin, we examine the extent to which cross-sectional variation in instru-
mented market equity predicts future returns. Specifically, we estimate panel regres-
sions of cumulative individual stock returns over various horizons H. Each excess-

return regression takes the following generic form:’

R(t,H) (n) = ay +by x me; (l’l) +cg X X,” +entH

where X contains cross-sectionally standardized stock characteristics: log market
equity, book-to-market ratio, momentum, investment, profitability, dividend-to-book
ratio, and market beta. As the tables will show, some specifications include all com-
ponents of X, while others use only a subset.

In Table 4, each regressor is standardized as a within-period z-score. In Table 5,
we alternatively map cross-sectional ranks onto the interval [—1,1] (see, e.g., Gu et
al., 2020). Moreover, in Section 4.3, we consider a specification that does not apply
any standardization.

We separately examine the extent to which cross-sectional dispersion at time ¢
predicts returns over the first month (reflecting the initial trading period) and over

subsequent periods. Specifically, we define the following four horizons: H = 1 month

For these return predictability tests, we use the pooled version of instrumented market equity
rather than the institution-specific version.
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(return over the first month of quarter # 4 1), H = 1 quarter (return over months 2 and
3 of quarter t 4+ 1), H = 4 quarters (return over months 2 through 12), and H = 6
quarters (return over months 2 through 18).

To avoid overlapping data, we retain only every H-th observation within each
PERMNO-specific time series. Standard errors are two-way clustered. The tables
report coefficient estimates with p-values shown in parentheses. Further details on
the data are provided in Appendix B.

The coefficient on instrumented market equity varies in sign depending on the
control variables included and the return horizon considered. However, at the one-
month horizon, the relationship between instrumented market equity and subsequent
returns is consistently positive. Moreover, at longer horizons, the relationship re-
mains positive whenever size (uninstrumented market equity), a standard asset pric-
ing (or risk) factor widely used by institutional investors, is included as a control.
In other words, a cross-sectional increase in a firm’s instrumented market equity is
associated with higher average future returns.

While many of the coefficients on me are positive, only some are statistically
significant. In particular, coefficient estimates are significant when considering rank-
standardized regressors (see Table 5) and including size as a control variable at the
I-month horizon. This pattern could justify tilts toward stocks with higher instru-
mented market equity, consistent with negative estimated elasticities when using this
instrument. Indeed, in Section 4.4, we find that estimated elasticities are negative for
a large fraction of stocks and institutions.

The coefficients on profitability (investment) are strongly positive (negative), con-
sistent with the documented profitability premium and investment premium in the
literature. Both are highly statistically significant. The coefficient on size is nega-
tive and statistically significant at horizons longer than one month. The coefficients
on CAPM beta and dividends are generally insignificant. Finally, the coefficient on
value is typically positive, consistent with the value premium, while the coefficient

on momentum tends to be negative in these multivariate specifications.
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Table 4: Return predictability regressions with z-score standardized regressors. The table reports panel regressions of excess returns
on standard asset pricing characteristics (profitability, investment, dividends, beta, size, value, and momentum) as well as the instrumented
log market equity me. The regressors are standardized in each period (z-scored). The table reports the coefficient estimates as well as the
p-values in parentheses. The panels represent the following horizons: 1 month (return over the first month of quarter # 4 1), one quarter
(return over the last two months of quarter ¢ 4 1, i.e., months 2 and 3), 4 quarters (i.e., months 2 through 12) and 6 quarters (i.e, months 2
through 18).

(a) One Month (b) One Quarter (¢) Four Quarters (d) Six Quarters

Regressor  (a) (b) © ) © ® @ () © ) © ® @ () © @ © ® @ (b) © @ © ®
. 0.22 0.56 0.21 0.19 0.45 -0.35 0.43 -0.35 -0.28 0.73 -0.11 4.08 -0.21 -0.34 3.52 0.10 6.13 -0.04 -0.33 5.04
me (0.28) - (0.19) (0.30) (0.36) (0.23) (0.17) - (0.40) (0.17) (0.28) (0.15) (0.93) - (0.14) (0.87) (0.80) (0.19) (0.96) - (0.08) (0.98) (0.86) (0.12)
PROF 0.41 0.43 0.43 0.47 0.42 0.49 0.47 0.51 0.52 0.46 0.45 0.51 3.06 3.27 3.30 3.36 3.10 3.55 4.37 4.66 4.72 5.01 4.44 529
003) (002 (002 (002 (002 (0.0l 004  (003) (003 (0.06) (005  (0.04) ©00)  (0.00) (0000  (0.00)  (0.00)  (0.00) ©00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)

INV -0.31 -0.32 -0.29 -0.26 -0.31 -0.25 -0.72 -0.70 -0.68 -0.73 -0.72 -0.67 -2.82 -2.77 -2.57 -2.61 -2.80 241 -4.37 -4.31 -4.02 -3.96 -4.34 -3.68
©00)  (0.00) (001  (001)  (0.00)  (0.02) 000)  (0.00) (0000  (0.00)  (0.00)  (0.00) 000)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00) 000)  (0.00) (.00  (0.00)  (0.00)  (0.00)

DIV -0.05 -0.02 -0.03 -0.02 -0.06 -0.01 -0.12 -0.06 -0.07 -0.13 -0.11 -0.04 -0.86 -0.55 -0.57 -0.72 -0.89 -0.48 -0.65 -0.22 -0.27 -0.38 -0.71 -0.11
(0.57) 0.77) (0.75) (0.83) (0.53) (0.94) (0.35) (0.61) (0.60) (0.36) (0.40) 0.77) (0.13) (0.29) (0.27) 0.21) (0.12) (0.36) (0.50) (0.81) (0.78) (0.70) (0.46) (0.91)
BETA 0.14 0.15 0.12 0.20 0.14 0.18 -0.21 -0.23 -0.25 -0.22 -0.21 -0.27 -0.81 -0.81 -1.05 -0.52 -0.79 -0.77 -0.72 -0.71 -1.09 -0.16 -0.67 -0.52
(0.53) (0.49) (0.58) (0.37) (0.53) (0.40) (0.45) (0.41) (0.36) (0.41) (0.45) (0.31) (0.40) (0.39) (0.28) (0.56) (0.40) (0.40) (0.56) (0.58) (0.37) (0.89) (0.59) (0.66)
SIZE _ 000 036 _ _ 0.28 _ 056 -0.84 _ _ -1.06 _ 180 442 _ _ -4.04 o 226 622 _ _ 547
(0.99) (0.33) (0.39) (0.00) (0.03) (0.01) (0.02) (0.02) (0.03) (0.07) (0.01) (0.01)

VALUE - - - 0.57 - 0.52 - - - 0.12 - -0.01 - - - 233 - 2,01 - - - 4.44 - 3.94
(0.01) (0.01) (0.68) (0.96) (0.01) (0.02) (0.00) (0.00)
-0.19 -0.10 0.40 0.50 -1.19 -0.57 -2.21 -1.25

MOM — — — — 035 (0.58) - - - - ©.11)  (0.03) - - - - 0.12)  (0.43) - - - - 0.02)  (0.15)
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Table 5: Return predictability regressions with rank-standardized regressors. The table reports panel regressions of excess returns
on standard asset pricing characteristics (profitability, investment, dividends, beta, size, value, and momentum) as well as the instrumented
log market equity me. The regressors are rank-standardized in each period. The table reports the coefficient estimates as well as the
p-values in parentheses. The panels represent the following horizons: 1 month (return over the first month of quarter # 4 1), one quarter
(return over the last two months of quarter ¢ 4 1, i.e., months 2 and 3), 4 quarters (i.e., months 2 through 12) and 6 quarters (i.e, months 2
through 18).

(a) One Month (b) 1Q (c)4Q (d) 6Q

Regressor  (a) (b) © @ (@ ® () (b) © @ © 0 (@ (b) © @ @ ® @ (b) © @ © ®
__ 036 135 033 031 1.08 0.48 048  -049 037 118 0.04 760 013 -0.05 7.25 0.22 9.47 052 055 7.30
me (0.22) - 0.06) (025  (0.27)  (0.07) (0.18) - 0.55)  (0.18)  (030)  (0.13) (0.98) - 0,09 (094  (098)  (0.10) (0.93) - 0.06)  (0.84)  (0.82)  (0.12)
PROF 047 0.50 0.53 0.85 050 0.86 0.68 073 0.74 0.81 0.59 0.87 356 3.86 3.99 5.61 3.63 5.76 481 5.17 533 8.66 5.05 8.79
0.02)  (001) (0O  (0.00)  (0.0)  (0.00) 001)  (0.00)  (0.00)  (0.04)  (0.02)  (0.03) 0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00) 0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)

NV 041 042 033 -027  -042 022 SL03 <099 095 099  -1.03  -081 380 368 307 306 -3.80  -2.48 580 -562  -500  -448  -583 -390
©001) (0000 (003  (0.06) (001  (0.11) 0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00) 0.00) (0000 (0.00)  (0.00)  (0.00)  (0.00) 0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)

DIV 20.06 003 004 017 007  -0.08 016 -006 006  -020  -0.14  -0.04 SL17 043 <039 <174 119 -095 0.78 1.69 176 -0.19 073 0.65
(0.80)  (089)  (0.86)  (0.48)  (0.78)  (0.71) 0.65)  (086) (0.86)  (0.55)  (0.69)  (0.89) 041) (075  (077)  (021)  (040)  (0.44) (0.74)  (046)  (044)  (0.93) (075  (0.76)

BETA 0.20 024 0.13 034 0.19 028 029 -032 036 024 026  -026 ‘124 L1200 <174 042 <126 -0.86 040  -028  -1.08 106 -045 047
0.56)  (047) (069  (0.32)  (057)  (0.38) 048) (044  (039)  (0.53)  (053)  (0.49) 038)  (041)  (023)  (0.74) (037  (0.52) (0.84) (089  (0.58)  (0.60)  (0.82)  (0.81)
SizE - 0.4 -154 - - -1.16 - -100 150 - - 235 - 383 -1178 - - BERE] - 496 -14.89 - - -11.79
073 (©.11) (0.16) 0.02)  (0.13) 0.01) 002  (0.02) 0.02) 005 (0.01) 0.01)

VALUE - o - 091 - 0.85 - - - 030 - 057 - o - 478 _ 4.64 o - - 8.72 - 831
(0.00) (0.00) (0.50) (0.17) (0.00) (0.00) (0.00) (0.00)

MOM _ _ _ o 032 004 _ o _ _ 0.86 127 _ _ _ _ -0.69 1.78 _ _ _ _ -2.59 1.04

(0.02) (0.89) (0.02) (0.00) (0.62) (0.15) (0.13) (0.49)




4.3 Resolution Tests

In the previous section, we examined panel regressions of cumulative individual
stock returns at various horizons H on standard asset pricing factors, augmented with
instrumented market equity. There, we normalized each variable either by ranking it
and mapping it onto the interval [—1, 1], or by standardizing it as a z-score.

In this section, we consider a specification that even more directly relates to Iden-
tification Condition 1 in Lemma I—namely, that a price shift used for elasticity
identification must resolve fully by the next trading date. To examine this quan-
titative restriction, we focus on the variable b x me, which, under the assumption
that the instrument shifts prices for non-fundamental reasons (controlling for the ob-
servables X), captures the corresponding log price shift. Moreover, we no longer
normalize variables in this analysis. Thus, if institutions can trade monthly, full res-
olution within that period would correspond to a coefficient of —1 on (13 X me) at the
one-month horizon.

The results are reported in Table 6. Qualitatively, the findings are similar to those
reported earlier. Once again, the coefficient on instrumented market equity varies
in sign depending on the control variables included and the return horizon consid-
ered. At the one-month horizon, the point estimates for the relationship between in-
strumented market equity and subsequent returns remain consistently positive across
specifications. Moreover, at longer horizons, the relationship is typically positive
whenever size (uninstrumented market equity) is included as a control.

Importantly, across all specifications in the table, we can reject the null hypoth-
esis that the coefficient on (13 x me) is —1, with a p-value of 0.00.' This provides
direct evidence that the instrument fails to satisfy the full-resolution requirement for

elasticity identification stated in Lemma 1.

10The p-values reported in the table refer to the null hypothesis of 0.
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Table 6: Price shift resolution regressions. The table reports panel regressions of excess returns on standard asset pricing characteristics
(profitability, investment, dividends, beta, size, value, and momentum) as well as b x ime. Variables are not standardized. The table reports
the coefficient estimates as well as the p-values corresponding to the null hypothesis of zero in parentheses. Across all specifications in the
table, we can reject the null hypothesis that the coefficient on (le x me) is —1, with a p-value of 0.00. The panels represent the following
horizons: 1 month (return over the first month of quarter ¢ + 1), one quarter (return over the last two months of quarter ¢ + 1, i.e., months
2 and 3), 4 quarters (i.e., months 2 through 12) and 6 quarters (i.e, months 2 through 18).

(a) One Month (b) One Quarter (¢) Four Quarters (d) Six Quarters

Regressor (@) () © @ © ® @ () © @ © ® @ (b) © @ © ® @ ) © @ © ®
b e 0.04 o 0.09 0.06 0.03 0.08 -0.05 o 0.02 -0.05 -0.05 0.03 -0.10 o 0.23 -0.02 -0.18 0.14 -0.67 _ -0.24 -0.55 -0.79 -0.37
(0.71) (0.56) (0.61) (0.78) (0.60) (0.69) (0.89) (0.72) (0.71) (0.85) (0.88) (0.74) (0.98) (0.76) (0.83) (0.37) (0.77) (0.44) (0.25) (0.62)
PROF 1.24 1.30 137 1.56 1.18 1.55 0.96 1.16 1.17 1.03 0.97 1.27 7.95 8.69 8.81 9.58 743 9.44 12.73 14.07 13.95 15.31 11.70 14.75
(0.04) (0.03) (0.02) (0.01) (0.01) (0.01) (0.20) (0.13) (0.11) (0.18) (0.18) (0.07) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
INV -1.57 -1.65 -1.51 -1.14 -1.58 -1.17 -3.92 -3.86 -3.83 -3.82 -3.91 -3.72 -15.69 -15.67 -15.33 -13.73 -15.71 -13.92 -24.21 -23.29 -23.65 -21.48 -24.31 -21.72
(0.07) (0.07) (0.09) (0.20) (0.07) (0.18) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
DIV -0.14 0.12 1.96 1.89 -1.26 2.12 -9.23 -6.15 -5.73 -8.76 -9.02 -4.85 -34.65 -24.36 -19.35 -25.44 -41.11 -21.19 -29.71 -3.09 -8.47 -16.37 -39.48 -12.40
(0.97) (0.98) (0.64) (0.63) (0.74) (0.63) (0.13) (0.37) (0.35) (0.16) (0.13) (0.44) (0.15) (0.45) (0.43) (0.31) (0.09) (0.39) (0.36) (0.94) (0.79) (0.62) (0.20) (0.69)

BETA 0.30 0.32 0.29 0.39 0.35 0.42 -0.40 -0.40 -0.41 -0.37 -0.41 -0.40 -0.79 -0.79 -0.86 -0.27 -0.41 -0.12 -0.70 -0.87 -0.79 0.04 -0.04 0.40
(0.34) (0.33) (0.35) (0.23) (0.27) (0.20) (0.27) (0.27) (0.25) (0.30) (0.25) (0.25) (0.60) (0.59) (0.56) (0.86) (0.78) (0.93) (0.68) (0.61) (0.64) (0.98) (0.98) (0.81)

SIZE o 005 -0.18 o o 0.12 o 027 030 o o -0.30 o 096 127 o o -1.00 o 204 171 o _ -1.23
(0.72) (0.34) (0.48) (0.13) (0.04) (0.03) (0.23) (0.03) (0.06) (0.05) (0.04) (0.10)

VALUE _ o - 073 _ 0.63 - o - 0.17 - 0.18 - - - 325 o 249 - _ - 4.40 - 3.50
(0.02) (0.03) (0.41) (0.31) (0.00) (0.00) (0.00) (0.00)

MOM - - - - 094 076 - - - - 0.18 028 - - - - 537 464 - - - - 922 811

(0.04) (0.07) (0.74) (0.61) (0.00) (0.00) (0.00) (0.00)




4.4 Unrestricted Elasticity Estimates

The results in the previous section show that, in several specifications, the rela-
tionship between instrumented market equity and returns is positive, not negative.
The idea that investors might allocate more to “expensive” stocks is consistent with
the price-shift build-up patterns documented in the literature (see Binsbergen et al.,
2023). For example, the momentum effect implies that expected returns are higher,
in the cross-section, for stocks that have experienced large price increases (winners)
compared to those with the largest price declines (losers). In a static framework,
higher allocations to more expensive stocks, as measured by instrumented market
equity, could therefore lead to erroneously estimated negative price elasticities.

KY 19 impose the assumption that demand curves are downward sloping, that is,
they restrict elasticities to be positive, by requiring fy;, < 1. This constraint elim-
inates the possibility of negative elasticity estimates. In this section, we reestimate
their demand equations without imposing this restriction to assess how binding the
constraint is in practice.

As in KY19, we restrict the sample to institutions with at least 1,000 stock hold-
ings at any given point in time. Over the sample period 1980Q1-2017Q4, this yields
9,289 institution-date pairs for which we estimate the demand equation.

Results. Panel A of Table 7 reports the unconstrained beta estimates of the demand
equations for all institutions and time periods (columns 2 and 3) and compares them
with the constrained estimates (imposing fy;; < 1) in column 4, following KY19.
Columns 2 and 4 use the institution-specific instruments (n/fl\e'm(n)), while column 3
reports estimates based on the pooled instrumented market equity (megg ¢(n)).

The table shows that in approximately 40-44% of cases, the unconstrained beta
estimates violate KY19’s assumption that Bp;, < 1. The mean beta in the uncon-
strained estimation is 0.81, compared to 0.89 in the constrained case. The standard
deviation of the estimates is 0.41 in the unconstrained case versus 0.25 in the con-
strained case.

According to KY19, for each date-manager pair, the point estimate of fy;; can

be used to compute the matrix of cross-elasticities as follows:

Wip =1 Po,, diag(w) ™" x (diag(w) —ww), (38)
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Table 7: Summary Statistics for Estimated s and Implied Elasticities

Panel A: Estimated s Panel B: Implied Elasticities
Statistic IVme [Vmepyy IVme (Po;ir<1) IVme IVmeyy IVmepy (Bois <1)
Mean 0.89 0.93 0.81 —-0.04 —-0.03 0.13
Std 0.41 0.37 0.25 0.37 0.42 0.24
p25 0.62 0.72 0.71 —-0.26 —0.23 0.01
p50 0.90 0.95 0.94 —0.06 —0.06 0.01
p75 1.16 1.18 0.99 0.17 0.24 0.18
P(B>1) 0.40 0.44 0.00 — — —
EB|B>1] 1.27 1.25 — — — —
Proportion <0  — — — 0.58 0.56 0.00

where w is the vector of positive portfolio weights for institution i at time ¢, and I and
w have corresponding dimensions.

Focusing on the diagonal elements of 7;, across a random sample of 300 date-
manager pairs (representing 549,250 such elasticities), we obtain the distribution of
elasticities reported in Panel B of Table 7. For each distribution of beta estimates in
columns 2, 3, and 4 of Panel A, we report the corresponding elasticity distributions
in columns 2, 3, and 4 of Panel B.

The table shows that when we remove the constraint fy;, < 1, the majority of
elasticity estimates are negative, with both the mean and median of the distribution

below zero.

4.5 Discussion on Learning and Beliefs

The tests above take the view that investors would, at best, respond to return pre-
dictability associated with the instrument only to the extent that it materialized ex
post over the full sample period. A simpler explanation for a lack of responsiveness
is that investors may never have attempted to investigate a signal equivalent to the
instrument during the sample period, and thus would naturally not react to this vari-
ation, implying an observed elasticity around zero. Moreover, even if investors had
explored such a signal, detecting statistically significant patterns would have been
even harder given the shorter samples they had access to within our overall sample
period. This, again, would result in a lack of responsiveness.

The only scenario where identification could succeed is if investors mistakenly
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believed, throughout the entire sample period, that the cross-sectional price disper-
sion induced by me would lead to fully resolving returns within a single trading
period, even though this consistently failed to occur. However, invoking such a sys-

tematic misperception appears implausible.

5 Conclusion

In this paper, we demonstrate that prevailing approaches to estimating asset demand
elasticities based on static structural IO models can generate substantial and system-
atic bias when applied to financial markets, whose “products” can be dynamically
traded. When shocks that induce price shifts are persistent or generate return pre-
dictability, the exclusion restrictions necessary for identification are violated, render-
ing elasticity estimates non-informative or even misleading. Our theoretical frame-
work clarifies the specific conditions under which elasticities can be meaningfully
estimated and quantifies the magnitude of bias when these conditions fail. Empiri-
cally, we show that widely used instruments — such as KY19’s instrumented market
equity — exhibit precisely the types of dynamic patterns that invalidate standard in-
terpretations.

More broadly, our results call for a reassessment of how—and whether—elasticity
estimates should be used to inform asset pricing models. Going forward, empirical
research on demand sensitivity in financial markets must explicitly account for the
temporal structure of trading and price formation. Failure to do so risks conflating
dynamic optimization behavior with static inelasticity, leading to incorrect inferences

about investor behavior and the functioning of financial markets.
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Appendix

A Additional Analyses and Proofs

A.1 The Case of Log Ultility

For the case of log utility we conjecture and verify that the value function takes the

form
V(W,s)=v logW +A(s), 39)

with v € (0,1) chosen so that the HIB has no residual dependence on logW. Sub-
stituting Viy = v/W and Viyw = —v/W? into (6), using W' = W (14 0"k, ) and
u(W') =logW’, gives

0= mealx{ —p[vlogW +A(s)] + v [rf +(p—r1)0— %OTEO]
+A Zq(s’|s) [nc(logW +log(1+ 8"k, y) — viogW —A(s))
+(1—mc)(viogW +vlog(1+0" ke y) +A(s") — vIogW —A(s))} }

Collecting the logW terms yields the coefficient

ATL’C
— Anc(l—-v)=0 = = —
pVv+Amc(l—v) v oA

The remaining terms (independent of logW) give the system solved by A(s):
0 = —pA(s) + vry+ (u—r1) 0160750
+ Y 4(519)[ (1= ) A(S) = A(s) + Clog (140 k) |, (40)
s/
where we define:

C:=nc+(1—7)v. 1)
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Differentiating (40) with respect to each 6; yields the first-order conditions

()

~ Kv f )
0= (u,-—rf)—(ze)j] +ACZq(s’|s)l+é—$ﬁl, =1, (42
s s,

A.2 Proof of Propositions 1 and 2

Suppose that 6 is the optimal portfolio share in the economy with continuous trade
and 6y, the optimal portfolio share when agents can trade only upon the discrete event
dates 7,,. Below we derive the results of Propositions 1 and 2 jointly. As stated in the
Propositions, we consider one risky asset. We first consider the case of continuous
trading. Thereafter, we analyze the setting with trading at the discrete event dates.

A.2.1 Continuous Trading

We first consider the continuous-trade economy and derive the sensitivity of the op-

timal risky-asset share 6:(s) with respect to the exposure to the wedge state

dog(s)
i oh a3 43
B 1y 43)

under the assumption of three shifter states {—1,0,+1} with transition probabilities
q(0[1) =qO[=1) =7, ¢(1,|]1)=g(=1[=1)=1-m, ¢(0[0)=1,

where all other Markov transition rates are zero. We consider only one risky asset.

Thus, we drop the subscript “1” on Uy, 01 4,01 ;. Define the total variance
= G/% + GIZ.

For any shifter state s € {—1,+1}, the return if the wedge jumps to s’ = 0 is:

K(s) = Ko=eP O 1 =¢Ps_1.
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Note that x(0) = 0. Under the stated assumptions, the first-order condition (11) can

be written as
0= A(s) [ —ry—y626c(s)] + A TRC(0) k(s) [1 + 6c(s) k(s)] 7, (44)
where we define:
C(s) == mc + (1 — m)A(s). (45)

No shift s = 0. Because the state s = 0 is absorbing, the FOC at s = 0 contains no

jump term and yields the standard Merton share

H—ry
yo?

6c(0) =

Further, A(0) is independent of 7z because it is determined entirely in the absorbing

state s = 0.

State-independence at § = 0. When 8 = 0 we have k; y = 0 for all states. Then
the FOC reduces to

p—rp—yc*0i(s) =0 (46)

s0 05 (s) = 65(0) is independent of w. Substituting this 6 into (10) shows that a
constant function A(s) = A(0) solves the corresponding linear system. Evaluating
it at the absorbing state s = 0 pins down A(0) via (10) (see the expression derived

below).
Shifter states s € {—1,+1}. Define
£(8,B;w) :==A(s) [ — rp — y620] + A7RC(0) k(s) [1+ O(s)] 7.

The FOC (44) is f(6¢(s),B;s) = 0. At B =0, as shown above, we have A(s) = A(0)
and k(s) = 0, so

£(8,0:5) = A(0) [ —ry — yo? 6], (47)
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yields 6y := 6/(0). Computing the partial derivatives at (6, 0) yields:

dof(60,0;5) = —A(0)yo?,
%fwmm@:xmﬁﬂn%oq@u+&m@nﬁﬂ — _AmRC(0)s,  (48)

since dgk(s)[g—o = —s and the term from differentiating [1 + 6ok]~7 vanishes at

k = 0. By the implicit function theorem,

* d
‘“;c(s) _ _aﬁ_f _ ws. (49)
p B=0 o.f (60,0) ( )76
It follows that the state-exposure elasticity is
d0¢(s)
1 —4 AC(0)
=T RO T ™ ) A©)

B=0

With continuous trade, the true elasticity requires instantaneous and deterministic
resolution, which obtains when A — oo and g = 1. It follows that the true price

elasticity under continuous trade is £ = oo.

Deriving A(0). When state s = 0 is an absorbing state, equation (10) simplifies to:

0= —pA(0)+ (1= DA(0) |ry + (1~ r;)8(0) — 178(0)%c?
+A [[nc+(1 — 1)A(0)] —A(O)}, (51)

and solving for A(0) yields:

A0) = A

Amc+p—(1=7)[re+ (u—rp)6(0) — 1y6(0)202|

(52)
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Further, the optimal portfolio share is given by the Merton demand 6;(0) = £ Y;;f .

Substituting this result yields:

;Lﬂc

A(0) =

_ S
Amc+p—(1=7)|ry+ U |

(53)

A.2.2 Discrete Trading

To keep CRRA utility well-defined under discrete trading, we restrict attention to
policies that keep wealth strictly positive, which corresponds to the restriction that at
each event date a risky asset weight 6p € [0, 1] is chosen. Let the risk-free asset price
be Py, with dPy;/Py; = rydt. At an event time 7, a CRRA investor chooses a weight
Op € [0, 1] that corresponds to fixed units

6pW. 1—-6p)W.
o= foWe o U)W (54)
Py PO/L'
For ¢ € [0,A], we obtain:
P, P,
W, =nm B + noPy; = OpWr— + (1—6p) Wy -2~
P PO,’L'
P
= GDWTFt + (1—6p)Wee /™) > 0 as. (55)
T
since F; > 0 and Fy; > 0 almost surely. Let
u—rg
0c(0) = e (0,1 56
c(0) = £ 3 e0.1) (56)

be the Merton share under continuous trade and s = 0. We assume there exist A < oo
and 8 > 0 such that for all A > A and all |B| < B the optimal discrete-trade choice

remains interior:

Op(s;A,B) €(0,1) forall s € {—1,0,+1}. (57)
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Note that the perturbation we study below is local in B and our sensitivity result

below shows that:
1
05(s:2.8) = 6c(0) + 0( 1) + 0(B) 58)

so for large enough A and small enough || the constraint 6 € [0, 1] is slack. Corre-
spondingly, the unconstrained FOC and the elasticity results derived below apply.
Given a weight Op is chosen at the last event date, the post-event weight after

time ¢ has passed is given by:

0 OpF;
" OpP A+ (1—6p)er

Then {6; },>0 follows
d6, =6,(1-6,)(u—r;—0%6,)dt+06,(1—6,)dB,,  6)=6p. (59)

Given the above assumptions, the post-event weight satisfies 6, € (0,1) for 7 €
[1,74 A], that is, it is bounded, so

A
/ 02 dt
0

and the It0 integral against 6, is square-integrable.

E < E[A] = = <o, (60)

1
)

We aim to characterize the HIJB equation adjusted for trading at discrete event
dates. We again conjecture that the value function has the form V(W,s) = u(W)A(s).

M(WA)—M(WO)] t6’s

Expected utility growth. We first derive an expression for ]E[ £(Wo)

lemma gives

du(W;)
u(Wi)
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where we define:

o ::(l—y)[rf+ 9,(u—rf)—%7629,2 , (62)
& =(1—-y)o6,. (63)

Working with the level SDE for u(W;), dividing by u(Wp), and integrating over [0, A]

gives

u(Wa) —u(Wo) _ [* u(Ws) A u(W)
u (W) _/0 M<Wo)o¢,dt+/0 M(WO)C,dB,. (64)

Let Z, := u(W;)/u(Wp). Then Z¢; is progressively measurable and, by admissibil-
ity, E [ (Z,¢;)*dt < oo for each finite 7, so the Itd integral [y Z,dB; is a square-

integrable martingale with mean zero. With A ~ Exp(4) independent of the Brown-

ian path,
A u(W;) A A
E[/O M(WO)CtdBt =E /O 7, & dB; :E[E /O 7, ¢ dB, Ahzo' (65)
Then
_ A o
AE[M] :)LE/ Z[(X,dt:)L/ e M E[Z,04] dr. 66)
”(WO) 0 0

We now split E[Z; o] = E[oy] + R(¢), where we define the remainder
R(1) :=E[(Z —1)a4]. (67)

We now evaluate the order of this remainder. Since 6; € (0, 1), there exists A < oo
with || < A. Define m(t) := E[Z;]. Since

dZt - Z[(Xt dt +Z[ Cf dB[ (68)

and E [ (Z;{)?dt < o0, we obtain:

m(t) = 1+/ E[Z o) dr < 1—|—A/ m(r)dr, (69)
0 0
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so by Gronwall, m(t) < e’ (see @Gksendal, 2003). Consequently,
R(t)| = |E[(Z: — Day]| SAE[Z — 1] <A( —1). (70)

So we obtain for A > A:

/1/ e M|R(t)|dt < A/l/ e MM 1) dr = 0<_>. (71)
0 0
Combining (66) with the remainder bound yields
[oe] o0 A
/1/ M E[Z,0] dt:/l/ e M Elag]dr + O(A) = A IE/ adi + O(AD).
0 0 0

Substituting the definition of o; and recalling that 8y = 0p is the weight set at the last

event, we obtain

AE {M(Wa) - u(Wo)}
u(Wo)
A A
=A(1—7)E|rsA + (u—rf)/ 6, dt — %}/62/ 62 dt ‘ 6=6p| +0(A71).
0 0
(72)

We now evaluate the expectations of the integrals involving 65 and 82. To do so,
we utilize Dynkin’s formula (see Dynkin, 1965; @ksendal, 2003). For the Markov
process (6;) with generator %, we obtain for any ¢ € C%([0, 1])

t
Bolo(8)] = 9(6)+Eo | Zo(6))dr 73)
where the dynamics of 6 given in (59) imply the infinitesimal generator

Lox)=x(1—x)(u—ry— sz) ¢'(x)+ 1 o2 (1 —x)? " (x). (74)
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The Dynkin formula yields the following expansions for small deterministic ¢:

[0(6)] = @(0)+1L¢(6)+0(?) (75)
Eo / 0(6)dr =19(8)+ 12Lp(6) +O() (76)

Integrating the first expansion (75) over s € [0,1] yields the second (76). Conditioning
on A and taking expectations yields:

/0 S 0(8)dr

E =E[A@(0)+1A*L¢(0)+0(A)]

_9(0)  Zo(0) 3
=t +0(177), (77)

where we use E[A] = 1/A, E[A?] = 2/A2%. With ¢@(x) = x and ¢(x) = x*> we obtain:

ZL(x)(0) =0(1—0)(u—rs—0c°0) (78)
20%(1—0)(u—rr—026) +026%(1—6)? (79)

i
=
[\)

~—

—~
D

N——
I

and we define b(0) := Z(x)(0). Correspondingly, we get:

N B B AT))
E /0 0| =7+ 25 +0(7), (80)
A 1 92 20%1-0)(u—r/—026)+026%(1—0)>
E/G,zdt _ & 20 0) (= 070) + PN 6)° sy,
0 2 A2
81)

Using these relations and the fact that 8p is the event-time weight, we obtain the
per-time diffusive block:

1—
(1 =7)[rr+ 00 (u=r) —1ro63] + L gop) +07), (82
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where the correction polynomial relative to continuous rebalancing is

g(6p) := (L —rs) p(1—6p) ((L—rs) — 5°6p)
— y0?05(1—6p)((u—rf) —0°6p) — 2yo*05(1—6p)*.  (83)

Jump block and marginal exposure to the shifter state. For a marginal exposure
dp with s € {—1,0,+1}, we can write:

K(s)=e P —1=—sdB+0(dB?). (84)
Using (14x)!=7 =1+ (1 — y)x+O(x?) and independence of A, we obtain
E[(1+6aK(s))' 7| 8= 6p] =1—(1—7) E[6a | 80 = 6p]sdB +O(dB*), (85)

and by the Dynkin expansion,

Bl6y | 6= 6] = 0 + ") 1 0(22). (36)

Discrete HJB and FOC. With V(W,s) = u(W)A(s), the per-time HIB is

0= —pA(s)+ (1 —7)A(s) [rf +6p-(u—rf)— %76295} + %A<s>g<e,)>

+2{meCO) E[(1-+ 6ak(s))! | 8 = 6] + (1 - m) C(5) ~A(s)}
+0(A7 ") +0(rdp?). (87)

Differentiating w.r.t. Op and dividing by (1 — y)A(s) yields the FOC:

O:(“_ff)_YGZQD‘F@—AﬂR% (l—f——b/(fD)) sdp

+0(A"HY+ondB?)+0(A"1dp). (88)

Sensitivity to f at § =0. Let 6}, solve the FOC. Differentiate at B = 0 (so A(s) =
A(0)):

dey,

fedﬁo

+f5 =0, (89)
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with

f yc%L@qLO(}Ll),
Cc(0 b (0}
fp = —Aan% (1—#%)&#0(1_1). (90)

Evaluating at the optimal solution at = 0, denoted by 9570, gives

a0
dp

__Jp_AmC(0) (1 V(65) , ' (650)

-1
l3=0_ fo  A(0)yo? 2 ;LYGZ)S%—O(A ). (91)

Normalizing by 6y, , yields the state-exposure elasticity under discrete trade (for large
but finite A):

1/ 146}
ols) = = (95 dp )‘,3_0

. ﬂRC(O)

~ A(0)yo265,

1 6*
(A +1(650)+ 2 }(/GD’O)> +o(A™h. (92)

By setting mg = 1 we obtain the true price elasticity under discrete trade (for large
but finite A):

_ C(O) 1( n* g”(GB,O) —1
@ = X0)10%6;, (k V(050 +— 55— | +oTh. O3)
Thus,
0 _TD 7o as A — oo, (94)
ED ED
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A.3 Proof of Proposition 3

We consider a Markov process for s with three states, Q = {0, 1,2}, and the Markov

transition probabilities:

q2|1) =mp 95)
q(1]1) =1—mp (96)
q(0[2) = mg o7
q(22) =1—mg (98)
q(0/0) =1 99)

All other Markov transition probabilities are zero. We consider one risky asset, J = 1.
Unless stated otherwise, we use the same notation as in the proof of Propositions 1
and 2. The proposition considers the case of discrete trade at event dates, for the case
of large A. We retain the diffusive block and Dynkin expansions from the proof of

Propositions 1 and 2:

1—
(1 =7)[rr+ 80+ (=ry) ~ 170263] + - 8(60) + O(A ),
with g(0) as previously defined and
b(6,
E[6a | 60 = 6p] = 6p + (%) +0(A72). (100)

A

Jump block. For a small exposure f3,
(1 + GA Ks,s’)l_y =1+ (1 - ’}/) QA Ks,s’ + 0(182)7 Kss = ﬁ (sl - S) + O(ﬁz)
Hence the per-time jump contribution in the HJB at state s is

ALl I9)CW) E[(1 -+ 0:k.0)' 7 | 6 = 0] ~A(s)].

At s = 1, only the transition to state s = 2 has a nonzero return kK and positive prob-

ability. Expanding and using (100) gives, after differentiating the HIB w.r.t. 6p and
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dividing by (1 —y)A(1), the first-order condition:

0= (u—rp)— Y626+ gl(fD) +1%7TBC(2) Ki 2 (1 + b/(;?D)>
+0(1_1)+0(Zﬁ2>+0(k—lﬁ)7 (aon)

with Kip = ﬁ —+ O(BZ).
State-independence at § = 0. With a zero exposure to the shifter state, we have

K, ¢ = 0 for all (s,s"), and the FOC yields a constant value 6p for all states w. Hence
at B =0, the HIB for A(-) also implies:

Thus, we can rewrite the FOC as follows:

0= (1—rs)—7526p + @ +f%n3c«))/3 (1+ bl(fm)
+0(A"HY+0(AB*+0(A7B). (102)

Let 65, := 6)5(w;A,0) denote the exact optimal event-time weight when § = 0.

Sensitivity at § = O (state s = 1). Define the function

10.8)= (=) - 100 + £+ L mco)p(1+52)
+oA H+o0MABH+0oA1B). (103)

The FOC is f(6;5(1;A,B),8) = 0. Evaluating the partial derivatives at the optimal
solution for f = 0, denoted by 95?0, yields

/! 9*
Fo(850,0) = —yo?+ 5 950) | o)
* b/(GB,O) —1
F5(65,0,0) = mnBC(O) <1+ . >+0(7L ). (104)
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By the implicit function theorem, we then obtain:

dos()|  _ fp _ AmsC(0) (1 ') | 8"(850)

1
dp ‘ﬁ:o_ fo  A(0)yo? A A yo? >+0()L ). (105)

State-exposure elasticity at s = 1. We obtain the state-exposure elasticity in state

s=1:

1/ 1 dmmﬂ
)= —- D 106
o 1(6;5(1) aB ) gy (oo
. )L?TBC(O) b/(egp) g”(@g,o) 1
“A<o>yczezs,o<+ A Tager )TOR) 00D

We can compare this solution to the true price elasticity under discrete trade, €p (see
characterization in the proof of Propositions 1 and 2) to obtain:

émw:mﬁé_@ as A — oo (108)

ED ED

A.4 Expressions for Holdings Dynamics in Section 3.3

Starting from the market-clearing condition in changes

dn';
dm; :_4dﬁ~ (109)
Jvt dﬁ] J
we obtain the relation
dni /niini\ "
xjPyadP = Py (—%j”x{) . (110)
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Next, we rewrite the state-exposure elasticity of the unit demand as a function of the

portfolio share demand

0, W,
Cdng s 4(E0) 4B G AR LA
dp; nj dB; P dBj Py Py

1‘19*;/ 07, b 9}'} 1
= I s Pyn s — sy | —
S dB] J,l t Sttt tPj,t eyt an

=[N+ (1-6],)] s, (111)
where we use use the relations:

aw  d(Xj_onj- P Py)

—= — . ﬁjstp. — P . 112

dﬁj dﬁj njre JitSt Jitj 1St ( )
dP~_1 d(eﬁjstﬁ. )—1 s

Jot _ Jit _ ,Bjs,p, -2 ,Bjs,p' _ __t 113

ap, ~ ap, B e sy (D)

Safe-asset holdings dynamics in the case of one risky asset. In the case of J =1,
the change in the safe-asset demand in response to a marginal state exposure df3; of

the risky asset is:

dl’l() t

d =——>2d 114
mo s 4B, Bi (114)
We can further write:
(1 Olt * *
_dno,z/no,t_d< Pos >/dB' _ deltWt dw, (1_91,z>+0 e
dp no s dBi Py,  dBi Py, no s
14d6y,/6;, W, Py (I-67,)\ 1
= — s, 07 P IS S [ —
( s dBi i Lp, +Poy By, s Py ot
* Py M ni i
=[— —(1—-6 . ) 115
(=11 —( IS Poﬂlof (115)
Plugging this result into the relation
d 1
xoPo,dB1 = Po,dmy, - (— n(;’/ norn(”) (116)
B xo

55



yields

. Piinisngs\
XOPO,tdﬁl = Py dmg - ([—nl,z —(1— 917t)] St ﬁﬁ_J) (117)

Pos nos xo

We therefore obtain the following relation for the stochastic process of incremental

dollar holdings in the risk-free asset:

v Picnicnos )™
{PO,rdmO,r }r:z = {XOPO,rSrdBI ) [_nj,f - (1 - 91*,1)] ) P e } . (118)
0,7 10,7 X0 ) —;

The incremental risk-free asset unit demand simplifies to:

Cd * P17 - Y ”
(amoc Yo, ={apr om0 o = {eampe)
T=t T=t

0,7

A.5 Proof of Corollary 1

The assumptions in Corollary 1 are the same as those in Proposition 2, except that
we consider continuous trade. Further, equation (25) implies the following relation

for the incremental holding upon inception of a dynamic the program:
dml,t = s5:dpy - [Tll,t + (1 - 91*,,)] "Ny (120)

where 1)1, is the state-exposure elasticity corresponding to the postulated price dy-
namics. For the resolution state process, we derived in the proof of Propositions 1

and 2 the following state-exposure elasticity in states s € {—1,41}:

A-C(0)
Ne(s) =g —————. (121)
(u—rr)-A(0)
Moreover, given the considered marginal exposure we can write:
9§(s) = Qé(O) + leldﬁl, (122)
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for some constant 8. Plugging these results into (120) yields

_ A-C(0) ]

dmy; = s;dB - 7R - (H=r))-A(0) +(1—(6%(0) + 615:dP1))] - 1 s, (123)
_ A-C(0) '
—S,dﬁl-[n'R- (/.L I”f)'A(O) —l—(l—@ (0))]-1’117,. (124)

As aresult, the initial unit change in the risky asset declines linearly in the per-event

resolution probability 7g.

A.6 Measuring Outsider Flows

Consider a single wedge jump from the pre-state w to the post-state w’, keeping the
notation introduced in Section 3. Let 6;" = 67 (s) and 9]7L = 07(s') be the optimal
shares before and after the jump, and denote the pre-jump price by P The price and
wealth immediately after the jump are given by:

+_p- = Pils'=s) _
P =P (1+x), K:=e" 1

Y

wt :W—[1+9j—1<]

The unit positions of insiders, n;, and outsiders, m, are given by:

0. W~
- _
J
++ W —
n{rZGjW :OjW 1+6;«
J + — :
P; P; I+«
Because the outsiders clear the market in units, Am; = —(n;r — n]_) implying
W~ 1+6; K
Am; = o [9.— _er i~
= T Ttk

J
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B Data and Measurement

B.1 Predictive Regressions

The main dataset used in this analysis is the dataset “IV.dta” from the replication
files of KY19. This dataset consists of a quarterly (FDATE) panel dataset on stocks
(PERMNO). The sample period is 1980Q1-2017Q4. For each PERMNO/FDATE,
the dataset provides information on the characteristics of that stock as well as the
value of the instrument for that stock’s market cap (IVme). The construction of the
latter variable is explained in a later section. All characteristics represent signals
computed at quarter-end. Accounting variables are lagged by 6 months compared to
market variables. Profitability (profit) is the ratio of operating profits to book equity
(operating profits are defined as revenue REVTS minus cost of goods sold COGS,
SG&A expenses XSGA and interest expenses XINT) to book equity. Investment
(Gat) is the annual log growth rate of book assets. The numerator in the dividend-to-
book ratio (divA_be) represents the sum of the past 12 months of dividend payouts.
Market betas (beta) are computed with 60-month rolling windows. This dataset has
615,789 observations.

To this baseline dataset, information on monthly stock returns are added as follows.
For each PERMNO/FDATE that appears in IV.dta, three columns retmi, retm2 and
retm3 are added and filled with the three monthly returns for the corresponding stock
in the corresponding quarter. For instance, for PERMNO 10107 (MSFT) and FDATE
2000Q1, those three columns take on values -0.161670, -0.086845 and 0.188811 re-
spectively. Monthly stock returns from CRSP are retrieved from common stocks
(codes 10 and 11) and adjusted for potential delisting. NYSE size breakpoints at the
end of each quarter are retrieved from Kenneth French’s website and added to the
dataset.

For a given PERMNO, quarterly observations may not be consecutive. This may be
due to missing data on stock characteristics or returns for some quarters or months.
While not frequent, this phenomenon affects 4,219 rows that represent time gaps of
2 quarters or more, with most occurrences pertaining to microcap stocks. KY define
the universe of stocks as common stocks with nonmissing data on characteristics and
return. To avoid incomplete time series, the longest sequence of quarterly observa-
tions for each PERMNO is retained. The resulting dataset has 574,541 observations.
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For each PERMNO/FDATE, LNme is the log of the market capitalization of the
stock, BtM is its book-to-market ratio. Momentum returns (as of the end of the quar-
ter, i.e its last month) are computed as the compounded return of that stock over the

past 3 quarters and the first two months of the considered quarter.

B.2 Elasticity Estimates

The first step is to construct the portfolio weights of institutional money managers.
Data on reported 13F holdings are from Thomson Reuters’ S34 dataset and start in
1980Q1. In this dataset, one row identifies a number of shares (SHARES) of a given
security (CUSIP) held by a given institution (MGRNO) at a given date (FDATE, in
quarters). Information on 13F filers are provided by the file "Manager.dta” retrieved
from KY’s replication file. Institutions in the S34 dataset that can’t be matched to
an institution in ”"Manager.dta” or for whom RDATE and FDATE do not coincide
are discarded. S34 identifies positions with stock CUSIPs. The crosswalk between
CUSIP and PERMNO provided by CRSP is used. Information on stock prices (PRC)
and shares outstanding (SHROUT) at quarter-end as well as share codes (SHRCD)
are obtained from CRSP Monthly Stock File. Stock characteristics are from the
”IV.dta” file presented earlier. Positions whose share codes are not 10, 11, 12 or
18 are discarded. If a position in S34 has a value for SHARES above SHROUT,
SHARES is set equal to SHROUT. If the sum of shares of a given security held by
13F filers at a given fdate exceeds SHROUT, all positions are scaled down by the
corresponding ratio.

The “household sector” (MGRNO = 0, "HH”) is then defined following KY as hold-
ing residual shares outstanding (if any) for all securities in the universe. Likewise,
following K, all positions of a given MGRNO at a given FDATE ina stock with share
code 12, 18 or with missing return or characteristics are aggregated and labelled as
the “outside asset” (PERMNO = 0). If a given MGRNO has assets under manage-
ment (AUM) below 10M at any given time and or if it has no holding in the outside
asset, its holdings are rebated to the HH sector. Once these modifications are made,
AUMs are recomputed portfolio weights are computed. For any row, RWEIGHT is
the ratio of that position’s weight in the corresponding MGRNQO’s portoflio (at the
FDATE considered) and the weight of the outside asset. Based on data made pub-
licly available by KY for 2007Q4, it is possible to compare the proximity between
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the relative portfolio weights generated by this procedure and those in their file. Over
2007Q4, the median absolute error 8" -Tuelghicr] i ¢ 0005,

For any given MGRNO/FDATE, rows with zero values for RWEIGHT are added for
PERMNOs that have been held during any of the past 11 quarters by this MGRNO
(but are not held during the quarter in consideration). This set of PERMNOs (held
currently or in the past 11 quarters) is called the MGRNO’s investment universe at
that date. The number of stocks held in nonzero amount is labeled NHOLDING.

Once the investment universe of each institution is defined, it is possible to construct

IVmej;(n) for a stock n and an institution 7 at time ¢ as in K, formula (19). It is possi-

ble to compare the generated values of [Vme for the HH sector to the values retrieved

[IVme—IVmegy |

from the file IV.dta. Over the sample period, the median absolute error TVinexy

is 0.04.
Finally, only MGRNO/FDATE pairs with NHOLDING of at least 1000 are retained

for the following analysis.
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